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Preface

Rogue and dispersive shock waves are phenomena that occur in nonlinear dispersive
media. They have been studied in different fields of physics, including ocean
waves, nonlinear optics, Bose-Einstein condensates, plasma physics, etc. They are
apparently very different phenomena; however, they are both characterised by the
development of extremes: while the amplitude of a rogue wave reaches large values,
shock waves develop extreme gradients. The presence of rogue and shock waves in
an incoherent wave system drastically influences its statistical properties.

During the last 15 years, the field of “rogue waves” has experienced a very quick
development. The original motivation of the research was related mostly to the
occasional measurement of extreme waves on the surface of the ocean and to the
occurrence of various accidents caused by the impact of large amplitude waves on
ships. Only more recently, it has been shown that extreme light fluctuations could
be observed in an optical fibre; the research activity has now broadened up to the
creation of a new field in its own.

A rogue wave is the manifestation of a process of focussing of energy. One of
the most accredited explanations of the formation of rogue waves (at least in an
idealised case) is the modulational instability process by which a small perturbation
of a plane wave can grow exponentially fast in time. This mechanism has been
known from the late sixties, but only at the beginning of the new century, it has been
associated to rogue waves. The nonlinear stages of the modulational instability are
described by exact solutions of the nonlinear Schrödinger equation. Those solutions,
named breathers, have been considered as the prototypes of rogue waves in the
ocean.

The development of an infinite gradient in finite time (gradient catastrophe) with
consequent wave-breaking is probably a less baleful phenomenon, nonetheless of
extreme nature. Mathematically, a classical shock wave is a discontinuous (weak)
solution describing propagation beyond a breaking point where an infinite derivative
develops. Starting from the last century, in several branches of physics, it has been
recognised that the dissipation plays an important role in regularising the jump
leading to physical shock waves characterised by strong but finite gradients. A
completely different non-trivial dynamics may result when dispersion dominates.

v
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In the latter case, after wave-breaking, the infinite gradient is regularised by the
spontaneous onset of fast non-stationary oscillations that progressively fill an
extended region. The effect of dispersion on the regularisation of shock waves is
very intriguing, leading to a complex strongly non-stationary dynamics. Optics has
provided only recently the opportunity to observe these dynamics that appear to be
similar to those produced in hydrodynamics under specific conditions involving, for
examples, strong tidal bores propagating upstream in river estuaries. Shock waves
have impact on many practical situations ranging from photonics to hydraulic dam-
breaking to traffic or gas dynamics problems, for which the dispersive effects, which
are normally neglected, may determine a qualitative change of the system behaviour.

In the summer of 2015, we have organised a school on rogue and dispersive
shock waves in the beautiful village of Cargese, Corsica (France). The idea was to
bring together top-level theoretical physicists, mathematicians and experimentalists
working mainly in ocean waves and nonlinear optics with the aim of presenting to
students and young researchers a unifying concept of rogue and dispersive shock
waves. The school lasted for 2 weeks: the first one was characterised by a set
of 3-h lectures whose goal was to introduce the students to the deterministic and
statistical approach to the subject in the various fields. During the second week,
shorter talks, in the workshop format, were given in which more advanced topics
were discussed. It turned out that the event was very successful with about 70
(including students and lecturers) participants and many useful discussions. The
present book can be considered as a collection of notes from some of the 3-h
lectures. It includes a first chapter “Hydrodynamic and Optical Waves: A Common
Approach for Unidimensional Propagation” in which a close analogy between optics
and hydrodynamic waves is made. The chapter introduces the reader to the nonlinear
Schrödinger (NLS) equation which has played a major role in the understanding of
rogue waves. A second chapter “Integrability in Action: Solitons, Instability and
RogueWaves” is devoted to the role played by integrable equations in the devel-
opment of the field; the chapter explains how to construct solutions that describe
coherent structures such as solitons and rogue waves or how to investigate patterns
as those caused by shock waves or instabilities. The third chapter “Hydrodynamic
Envelope Solitons and Breathers” and fourth chapter “Experiments on Breathers
in Nonlinear Fibre Optics” describe experiments in hydrodynamics and nonlinear
optics where exact breather solutions of the NLS equation have been reproduced
experimentally. The following three chapters are devoted to a statistical description
of rogue waves in water waves: in chapter “Hamiltonian Description of Ocean
Waves and Freak Waves” a theory for estimating the kurtosis and the skewness
of the surface elevation from wave spectra is explained. The theory has a major
relevance in the forecasting of rogue waves in operational systems. Its validation
with field measurements is also reported. In chapter “Modelling Transient Sea States
with the Generalised Kinetic Equation” an extension of the theory presented in
chapter “Hamiltonian Description of Ocean Waves and Freak Waves” is discussed:
in particular, the role of sharp changes of wind in the generation of rogue waves
is highlighted. Chapter “Rogue Waves in Random Sea States: An Experimental
Perspective” describes the results from a number of experiments performed in wave
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tanks with the aim of establishing the probability of formation of rogue waves
in different sea states; experiments including currents under the waves are also
described. In chapters “Introduction to Wave Turbulence Formalisms for Incoherent
Optical Waves” and “Integrable Turbulence with Nonlinear Random Optical Waves”
the attention is turned to the description of incoherent optical waves. The reader is
brought to the construction of statistical tools for describing a system of a large
number of interacting optical waves; issues related to condensation, thermalisation,
incoherent modulational instability and wave turbulence are discussed. Chapter
“Integrable Turbulence with Nonlinear Random Optical Waves” is related to the
emerging field of integrable turbulence, i.e. the nonlinear state generated by a
large number of incoherent waves described by integrable equations. Experiments
in optical fibres ruled by NLS equation and numerical simulations revealing the
formation of heavy tails in the probability density function of the wave amplitude
are described. The last two chapters deal with dispersive shock waves: the first of the
two includes a pedagogical introduction to the Whitham modulation equation that
plays a major role in the understanding of dispersive shock waves. The last chapter
includes experimental results in optics and hydrodynamics displaying dispersive
shock waves.

Our idea was to create a book accessible to graduate students and researchers
working in various fields of physics and applied mathematics. Moreover, we hope
that this work might be useful to students by bringing to their attention problems of
fundamental nature that are often neglected in graduate courses. The book cannot
be considered as exhaustive; the reason is that the field on rogue and dispersive
shock waves is rapidly evolving, and every month, new interesting ideas appear in
the literature. We have made a selection of the topics, giving priorities to what we
believe are the results described by a common and interdisciplinary language. Each
chapter is self-consistent and it does not require the reading of the previous one.

We would like to thank all the authors of the chapters of the book and, more
generally, all the speakers of the school in Cargese with whom we have exchanged
many fruitful and interesting discussions on rogue and dispersive shock waves.
Finally, we would also like to acknowledge the CNRS, the Università di Torino,
the Università di Brescia and the European Geophysical Union for their financial
support to the school.

Torino, Italy Miguel Onorato
Brescia, Italy Fabio Baronio
Valbonne, France Stefania Residori
February 2016
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Hydrodynamic and Optical Waves: A Common
Approach for Unidimensional Propagation

Miguel Onorato, Fabio Baronio, Matteo Conforti, Amin Chabchoub,
Pierre Suret, and Stephane Randoux

Abstract The aim of this chapter is to build a bridge between water and optical
waves. After a brief introduction on the role played by the so-called normal
variable in the D’Alembert equation and a short description of the Hamiltonian
formulation of water waves, we introduce a similar formalism for describing optical
waves. We restrict our analysis to one-dimensional propagation. Under a number
of assumptions, we rewrite the Maxwell equations in a very general form that
account for three- and four-wave interactions. Those equations are very similar to
the one describing water waves. Analogies and differences between hydrodynamic
and optical waves are also discussed.
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1 Introduction

It is well known that the spatio-temporal dynamics of narrow-banded wave packets
in nonlinear dispersive media can be modeled by the nonlinear Schrödinger (NLS)
equation [1–4]. One important feature of such equation is that analogies between
surface waves, optical waves, Bose-Einstein condensates, plasma physics, etc. can
be drawn. For example, recently a detailed comparison between the NLS equation
for surface gravity waves and optical waves in a fiber has been reported in [5], see
also [6].

Here, our aim is to present a more general framework in which analogies between
hydrodynamics and optics can be established beyond the NLS equation. The key
ingredient is the so-called normal or wave action variable. While such variable
has been widely used in hydrodynamics [3, 7–11], it appears that in nonlinear
optics it is not as common and only recently it has been exploited to propose
an Hamiltonian structure of the equations describing the propagation of ultrashort
optical pulses [12, 13]. Within this variable, the evolution equations for water and
optical waves can be written in a similar fashion: a linear term which accounts for
full dispersion is followed by integral terms that include quadratic, cubic and, in the
most general case, higher-order nonlinearities; these integral terms are responsible
for the transfer of energy between modes. In nonlinear optics the strength of the
nonlinear interaction depends on the medium: �.2/ and �.3/ correspond to quadratic
and cubic nonlinearity, respectively. For water waves the nonlinear terms are the
results of a integral power series expansion for which the small parameter is the
wave steepness, i.e. the product of wave amplitude times and wave number.

In this chapter we will first introduce the normal variable in the linear wave
equation; this part is purely pedagogical and it should help the reader to familiarise
with the formalism before introducing the nonlinear terms. Then, water, i.e. gravity
and capillary, waves will be discussed very briefly by presenting the equations
written in the normal variable. The discussion on optical waves will be more
detailed: the formalism adopted here, especially for the three-wave interaction and
the use of the canonical transformation to remove non-resonant terms, is somehow
less discussed in the optical literature. We will also show that using the normal
variable, it is also straightforward to derive simple models; just to give examples, we
show a quick derivation of the Second-Harmonic Generation model and the Three-
Wave Interaction system. Conclusions are presented in the last Section.

2 Normal Variables in the Wave Equation

Let us consider the D’Alembert equation for wave propagating along the x-direction:

@2q

@t2
� c2

@2q

@x2
D 0; (1)
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where q D q.x; t/ is some displacement with respect to an equilibrium position and
c is the wave velocity. The approach presented here is developed in Fourier space,
therefore, the following definition of inverse and forward Fourier Transform in the
spatial variable is given:

q.k; t/ D
Z C1

�1
q.x; t/eikxdk; (2)

q.x; t/ D 1

2�

Z C1

�1
q.k; t/e�ikxdx: (3)

The Dirac Delta function plays a crucial role and its definition here follows:

ı.k1 � k2/ D 1

2�

Z C1

�1
ei.k1�k2/xdx: (4)

We now plug the definitions of the Fourier Transform into Eq. (1) to obtain the
following set of infinite decoupled harmonic oscillators, each oscillating with
angular frequency Q!2k D Q!.k/2 D c2k2:

@2qk
@t2

C Q!2k qk D 0; (5)

where we have used the short notation qk D q.k; t/. We now introduce the
momentum pk D @qk=@t and the following normal variable ak D a.k; t/, defined as
follows:

ak D
r
!k

2

�
qk C i

!k
pk

�
: (6)

It is important to underline that in the definition (6) !k has been chosen as the
positive root, i.e. !k D cjkj, with c positive. It is then straightforward to show that
Eq. (5) for the variable ak reduces to the simple universal equation:

i
@ak
@t

D !kak: (7)

A few remarks are needed:

1. Equation (7) is equivalent to the D’Alembert equation (1) in the sense that no
approximations have been made (apart from the assumption that the Fourier
Transform can be applied).

2. Starting from a second-order partial differential equation, we have reduced the
system to a first-order partial differential equation for a complex variable ak (note
that a.x; t/ is not real, thus, ak ¤ a��k).
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3. The equation has some degree of universality in the sense that extending the
D’Alembert equation by including dispersion, it can still be expressed in the
form of (7). Just to give an example, let us consider the following dispersive
equation:

@2q

@t2
� c2

@2q

@x2
D ˇ

@4q

@x4
; (8)

with ˇ constant. Then, it is trivial to show that by introducing the normal
variable as in (6), Eq. (8) reduces to (7), with the only attention that now
!k D Cpc2k2 � ˇk4, i.e. waves are dispersive.

4. In the dispersive case (see point 3), it is trivial to derive a linear Schrödinger
equation (without external potential) from Eq. (7): the dispersion relation needs
to be expanded to second-order around a specific wave number k0; a rotation is
then performed to eliminate the phase term (details for the nonlinear case will be
given in the following sections) and the last step consists in writing the equation
in physical space.

5. Equation (7) still describes waves travelling into different directions (positive and
negative x). Indeed, it turns out that for positive values of k, waves travel in the
positive x direction, while for negative values of k, they travel in the opposite
direction.

6. Equation (7) has a Hamiltonian structure:

i
@ak
@t

D ıH

ıa�
k

; (9)

where ı now is a functional derivative and

H D
Z C1

�1
!kjakj2dk D 1

2

Z C1

�1
.jpkj2 C !2k jqkj2/dk; (10)

is the Hamiltonian, i.e. the kinetic plus the potential energy. Moreover, if hk D
!kjakj2 is an energy density, then jakj2 plays the role of wave action; in slowly
varying environments (for example the nonhomogeneity due to the presence of
an ocean current under the waves), while the energy changes, the wave action is
preserved. This is another good reason for using the ak variable instead of the qk
and pk variables.

7. If experimental data from optical fibers or wave tank experiments need to be
compared with numerical simulations, it can be convenient to deal with an
evolution equation in space rather than in time. For the D’Alembert equation,
this result is achieved by taking the Fourier Transform in time of Eq. (1) using
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the following definitions:

q.x; !/ D
Z C1

�1
q.x; t/ei!tdt; (11)

a! D
r

k!
2

�
q! C i

k!
p!

�
; (12)

with k! D k.!/ D Cj!j=c and a! D a.!; x/. The evolution (in space) equation
can be written as follows:

i
@a!
@x

D k!a!: (13)

Again, no approximations have been made at this stage. For ! > 0 waves travel
in the positive direction, while for ! < 0 waves travel in the opposite direction.
The corresponding Hamiltonian is

H D
Z C1

�1
k! ja!j2d!: (14)

In dispersive nonlinear systems, the transformation from an evolution equation in
time to one in space is in general not exact and one has to assume that the dispersion
and nonlinearity are small, see for example Sect. 3.2.1.

In the following Sections we will introduce in the surface and optical wave
systems the same formalism as the one described for the D’Alembert equation, with
the only addition that nonlinearity will be taken into account; the structure of Eq. (7)
or Eq. (13) will remain the same except for the fact that some integral terms, that
are the results of wave-wave interactions, will appear on the right hand side of the
equations.

3 Water Waves in One Horizontal Dimension and Their
Hamiltonian Formulation

Here we give a brief overview of the Hamiltonian formulation of surface gravity
waves; for more details the reader can look at the contribution of P.A.E.M. Janssen
in the same volume. We consider waves propagating along the x-coordinate in a
water depth h; we assume the fluid to be inviscid, incompressible and irrotational.
Under the last hypothesis, the velocity potential �.x; z; t/, related to the velocity
field as u D r�, can be introduced.



6 M. Onorato et al.

Under these conditions the equations of motions, known as the Euler equations
for surface waves, take the following form:

@2�

@x2
C @2�

@z2
D 0 � h < z < �.x; t/

@�

@t
C @�

@x

@�

@x
D @�

@z
z D �.x; t/

@�

@t
C 1

2

"�
@�

@x

�2
C
�
@�

@z

�2#
C g�� �w D 0 z D �.x; t/

@�

@z
D 0 z D �h

(15)

g is the gravity acceleration, � is the ratio between the surface tension coefficient
and the fluid density and w is the surface curvature:

w D @�=@xp
1C .@�=@x/2

: (16)

The equations appear, at first sight, rather complicated: the Laplace equation has to
be solved in a domain that changes as a function of space and time and depends on
the potential as well. In [3] it has been shown that the surface elevation, �.x; t/, and
the velocity potential evaluated at the free surface,  .x; t/ D �.x; z D �.x; t/; t/,
are canonically conjugate variables and the Hamiltonian is the total (kinetic plus
potential) energy of the system. The formulation is made in wave number space
and the Hamiltonian is then expanded for small steepness, i.e. small amplitude
with respect to the wave length, in such a way that it will be the sum of an
unperturbed Hamiltonian plus terms related to wave-wave interactions. Here, we
consider the expansion truncated to cubic nonlinearity in the evolution equation,
therefore three- and four-wave interactions are included (for five-wave interactions,
the reader should refer to [7]). The action density normal variable is then introduced
as follows:

a.k; t/ D
r

g

2!.k/
�.k; t/C i

s
!.k/

2g
 .k; t/; (17)

!.k/ is the frequency associated to wave number k and is taken as the positive root
of the dispersion relation in arbitrary depth h:

!.k/ D
p
.gjkj C � jkj3/ tanh.jkjh/: (18)
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The evolution equation for the action variable, up to cubic nonlinearity, takes the
following form:

i
@a1
@t

D !1a1 C
Z

V.1/1;2;3a2a3ı1�2�3dk23 C 2

Z
V.2/2;1;0a

�
2a3ı1C2�3dk23

C
Z

V.3/0;1;2a
�
2a

�
3 ı1C2C3dk23 C

Z
T.2/1;2;3;4a

�
2a3a4ı1C2�3�4dk234

C
Z

T.1/1;2;3;4a2a3a4ı1�2�3�4dk234 C 3

Z
T.1/3;2;1;0a

�
2a

�
3a4ı1C2C3�4dk234

C
Z

T.4/1;2;3;4a
�
2a

�
3a

�
4 ı1C2C3C4dk234:

(19)

The notation, taken directly from [7], is the following: the argument kj in a, !, V.n/,
T.n/ and ı-functions are replaced directly by subscripts j; for example aj D a.kj; t/,

!j D !.kj/, V
.n/
1;2;3 D V.n/.k1; k2; k3/ and ı1�2�3 D ı.k1 � k2 � k3/.

The equation is valid for both gravity and capillary waves; however, there is a
substantial difference between the two dynamics. For capillary waves three-wave
interactions can be resonant: this is exactly the same as considering a �.2/ medium
in which the phase-matching condition is satisfied, see Sect. 4.1. As described in the
following section, for surface gravity waves exact three-wave resonant interactions
are forbidden. Despite this, Eq. (19) without cubic nonlinearity is the starting point
for the derivation of many important physical models in shallow water such as the
Korteweg de Vries (KdV) equation or the Boussinesq model (or in two horizontal
dimensions the Kadomtsev-Petviashvili equation); all the above equations are
derived assuming that waves are long; the dispersion relation for gravity waves is
! D p

gjkj tanh.jkjh/ so that the Taylor expansion around k D 0 leads to first and
third derivatives of the surface elevation, i.e. the linear terms in the KdV equation.

3.1 Surface Gravity Waves: The Canonical Transformation

For surface gravity waves in arbitrary depth h the dispersion relation simplifies to
!2.k/ D gjkj tanh.jkjh/. Given the geometrical form of the dispersion relation, it can
be shown (see for example [14]) that three-wave resonant interactions are forbidden,
i.e. none of the following pair of equations, related to the first, second and third
integrals in (19),

k1 � k2 � k3 D 0; !1 � !2 � !3 D 0;

k1 C k2 � k3 D 0; !1 C !2 � !3 D 0;

k1 C k2 C k3 D 0; !1 C !2 C !3 D 0;

(20)
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have solutions. This result implies that the main dynamical process is a four-wave
interaction one and quadratic nonlinearities have the role of developing bound
modes. Moreover, we mention that not all of the four-wave interactions are in
general allowed. For surface gravity waves, it can be shown that none of the
following processes is possible:

k1 � k2 � k3 � k4 D 0; !1 � !2 � !3 � !4 D 0;

k1 C k2 C k3 � k4 D 0; !1 C !2 C !3 � !4 D 0;

k1 C k2 C k3 C k4 D 0; !1 C !2 C !3 C !4 D 0;

(21)

and the only relevant process is the following:

k1 C k2 � k3 � k4 D 0; !1 C !2 � !3 � !4 D 0: (22)

All the integrals that cannot satisfy the resonant condition can be removed by an
ad hoc canonical transformation from variable fa; a�g to fb; b�g. This is expressed
through an integral power series of the form:

a1 D b1 C
Z

A.1/1;2;3b2b3ı1�2�3dk2;3 C
Z

A.2/1;2;3b
�
2b3ı1C2�3dk2;3

C
Z

A.3/1;2;3b
�
2b

�
3 ı1C2C3dk2;3 C

Z
B.1/1;2;3:4b2b3b4ı1�2�3�4dk2;3;4

C
Z

B.2/1;2;3;4b
�
2b3b4ı1C2�3�4dk2;3;4 C

Z
B.3/1;2;3:4b

�
2b

�
3b4ı1C2C3�4dk2;3;4

C
Z

B.4/1;2;3;4b
�
2b

�
3b

�
4 ı1C2C3C4dk2;3;4:

(23)

The coefficients A.i/1;2;3 and B.i/1;2;3;4 are selected in order to remove the non-resonant
quadratic and cubic terms in Eq. (19). The equation for the new variable takes the
following simpler form:

i
@b1
@t

D !1b1 C
Z

QT.2/1;2;3;4b�
2b3b4ı1C2�3�4dk234; (24)

where QT.2/1;2;3;4, reported for example in [15] for arbitrary depth, is the interaction

coefficient that depends on T.2/1;2;3;4 and A.i/1;2;3. Equation (24) is known in the field
of water waves as the Zakharov equation [3] and it is the starting point for both
deterministic and statistical studies on water waves. As we will see in the next
Section, the Zakharov equation is also suitable for deriving envelope equations such
as the Nonlinear Schrödinger and higher-order equations. The Hamiltonian takes
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the following form:

H D
Z
!1jb1j2dk1 C 1

2

Z
QT.2/1;2;3;4b�

1b
�
2b3b4ı1C2�3�4dk1234: (25)

We recall that QT.2/1;2;3;4 is real and, in order the system to be Hamiltonian, the

following symmetries QT.2/1;2;3;4 D QT.2/2;1;3;4 D QT.2/3;4;1;2 need to be satisfied.

3.2 The NLS Equation for Surface Gravity Waves in Infinite
Water Depth

In order to derive the NLS equation, it is sufficient to take the narrow-band
approximation of the Zakharov equation. Before doing that, we should note that,
in terms of nondimensional variables, the nonlinear term in the Zakhaorv equation
is smaller than the linear one; more precisely, because of the presence of the cubic
nonlinearity, the integral is of the order of �2, with � is the wave steepness. In taking
the narrow-band limit, such information is important in order to balance properly
the nonlinearity and the dispersion. We introduce the variable K D k � k0 and, after
Taylor expanding the dispersion relation around k0 to second-order, we get:

!.k/ ' !0 C K
d!.k/

dk

ˇ̌
ˇ̌
kDk0

C 1

2
K2

d2!.k/

dk2

ˇ̌
ˇ̌
kDk0

; (26)

where !0 D !.k0/. The interaction coefficient is also Taylor expanded around k0 to
the leading order,

QT.2/k1;k2;k3;k4
' QT.2/k0;k0;k0;k0

D k30; (27)

so that the nonlinearity is balanced by the K2 dispersive term. Introducing the
variable b.K; t/ D A.K; t/ exp .�i!0t/ in order to remove a phase and after taking
the Fourier Transform, the NLS equation is obtained:

i

�
@A

@t
C cg

@A

@x

�
� ˇ2

@2A

@x2
� � jAj2A D 0; (28)
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with

cg D d!.k/

dk
D 1

2

!0

k0
;

ˇ2 D �1
2

d2!.k/

dk2

ˇ̌
ˇ̌
k0

D !0

8k20
;

� D k30:

(29)

Using a Galilean transformation of the form x0 D x � cgt, it is always possible to
remove the term containing the group velocity. Note that usually the NLS equation
is written for a variable that has the dimensions of the surface elevation and not of
the wave action as in Eq. (28); the reason of our choice is related to the fact that, as
noted in [16], the higher-order envelope equations keep the Hamiltonian structure
in the wave action variable.

3.2.1 The NLS Equation as an Evolution Equation in Space

The nonlinear and the dispersive terms in Eq. (28) are of higher-order with respect
to the terms inside the parenthesis. This fact can be used to write the NLS equation
as an evolution equation in space rather than in time; indeed, at leading order we
have:

@A

@x
D � 1

Cg

@A

@t
C h:o:t; (30)

where h:o:t means higher-order terms. We use such solution in order to build the
second-order derivative operator contained in the NLS equation by taking the x
derivative of Eq. (30)

@2A

@x2
D � 1

cg

@

@x

�
@A

@t

�
C h:o:t

D � 1

cg

@

@t

�
@A

@x

�
C h:o:t D 1

c2g

@2A

@t2
C h:o:t:;

(31)

where we have used the fact that derivatives in t and x commute. We plug our result
in Eq. (28) to get:

i

�
@A

@x
C 1

cg

@A

@t

�
� ˇ2

c3g

@2A

@t2
� �

cg
jAj2A ' 0: (32)

The evolution equation in time is only asymptotically equivalent to the evolution
equation in space [higher-order terms are omitted in Eq. (32)] and there is no
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exact transformation that can map one into the other. The term containing the
first derivative of the amplitude can always be removed by the transformation
t0 D t � x=cg.

4 Optical Waves in Normal Variables

We now consider optical waves described by the Maxwell equation in a medium
characterized by quadratic and cubic nonlinearity. We suppose that the optical wave
field is linearly polarized along the x transverse direction, E D .E; 0; 0/ with E D
E.z; t/ and assume that the material acquires a polarization P D Pex D P.z; t/ex,
oriented along the x direction. It is not difficult from the Maxwell equations to write
the following second-order partial differential equation for the electric field E:

@2E

@z2
� 1

c2
@2E

@t2
� 1

�0c2
@2PL

@t2
D 1

�0c2
@2PNL

@t2
; (33)

where P has been split as a sum of a linear and a nonlinear contribution, P D
PL C PNL. The above equation can be written in Fourier frequency space as:

@2E.!/

@z2
C !2

c2
E.!/C !2

�0c2
PL.!/ D � !2

�0c2
PNL.!/; (34)

where

PL.!/ D �0�
.1/E.!/

PNL.!/ D �0

Z
�.2/.!; !1; !2/E.!1/E.!2/ı.! � !1 � !2/d!1;2

C �0

Z
�.3/.!; !1; !2; !3/E.!1/E.!2/E.!3/ı.! � !1 � !2 � !3/d!1;2;3:

(35)

The linear dispersion relation has the following form:

Qk.!/2 D !2

c2
.1C �.1/.!//: (36)

We assume that �.1/.!/ has also a negligible imaginary component (losses are
neglected), so that �.1/.�!/ D �.1/.!/; �.2/ and �.3/ are also assumed real. For
simplicity of notation we rewrite Eq. (34) as follows:

@2E1
@z2

C Qk21E1 D �!
2
1

c2

Z
�
.2/
1;2;3E2E3ı

2;3
1 d!2;3 � !21

c2

Z
�
.3/
1;2;3;4E2E3E4ı

2;3;4
1 d!2;3;4

(37)
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with

Ei D E.!i/; Qk2i D Qk.!i/
2 (38)

and introduce the normal variable:

a.!; z/ D 1

2

p
2k.!/

j!j
�
E.!; z/C i

1

k.!/

E.!; z/

@z

�
(39)

where

k.!/ D
s
!2

c2
.1C �.1/.!// (40)

is the positive branch of the dispersion relation (note that k.!/ D k.�!/). Because
of the reality of E.z; t/, it follows that

a.�!; z/� D 1

2

p
2k.!/

j!j
�
E.!; z/ � i

1

k.!/

E.!; z/

@z

�
I (41)

therefore, the electric field can be expressed in terms of the normal variable as
follows:

E.!; z/ D j!jp
2k.!/

Œa.!; z/C a.�!; z/��: (42)

Taking the derivative in z of Eq. (41) and using (37), we get after some algebra:

i
@a1
@z

D k1a1 C
Z

V1;2;3

�
a2a3ı1�2�3 C 2a�

2a3ı1C2�3 C a�
2a

�
3 ı1C2C3

�
d!2;3

C
Z

T1;2;3;4

�
1

3
a2a3a4ı1�2�3�4 C a�

2a3a4ı1C2�3�4

C a�
2a

�
3a4ı1C2�3�4 C 1

3
a�
2a

�
3a

�
4 ı1C2C3C4

�
d!2;3;4;

(43)

where

V1;2;3 D 1

c2
j!1!2!3jp
8k1k2k3

�
.2/
1;2;3; T1;2;3;4 D 3

c2
j!1!2!3!4jp
16k1k2k3k4

�
.3/
1;2;3;4: (44)
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We have assumed the following symmetries on �.2/1;2;3 and �.3/1;2;3;4:

�
.2/
1;2;3 D �

.2/
1;�2;3 D �

.2/
1;2;�3

�
.3/
1;2;3;4 D �

.3/
1;�2;3;4 D �

.3/
1;2;�3;4 D �

.3/
1;2;3;�4:

(45)

Without such assumptions, the structure of the equation remains the same apart from
the fact that each term inside the integral has a different coefficient in front [just like
in the water wave problem, see Eq. (19)].

In the following we will consider separately the following cases:
(1) �.3/ D 0 and �.2/ ¤ 0, (2) �.2/ D 0 and �.3/ ¤ 0, (3) �.2/ ¤ �.3/ ¤ 0.

4.1 Three-Wave Interactions: �.2/ Media

Here, we neglect four-wave interactions and consider the following equation:

i
@a1
@z

D k1a1 C
Z

V1;2;3

�
a2a3ı1�2�3 C 2a�

2a3ı1C2�3 C a�
2a

�
3 ı1C2C3

�
d!2;3:

(46)

Once more, we emphasise that the above equation does not have any restriction on
the spectral width of the optical pulse: no paraxial approximation has been used to
neglect the second-order derivative of the electric field; moreover, it still describes
waves propagating into two directions and it is as exact as Eq. (33) for a pure �2

media. The presence of the three Dirac Delta functions in Eq. (46) implies that
transfer of energy can take place if one of the following conditions is satisfies:

!1 D !2 C !3; !1 D !3 � !2; !1 D �!3 � !2: (47)

Such transfer can be efficient or not depending if the associated conservation of
momentum takes place. Indeed, by applying the following rotation, A.!; z/ D
a.!; z/eik.!/z, it is straightforward to write the equation in the so-called interaction
representation:

i
@A1
@z

D
Z

V1;2;3

�
A2A3e

i.k1�k2�k3/zı1�2�3 C 2A�
2A3e

i.k1Ck2�k3/zı1C2�3

C A�
2A

�
3 e

i.k1Ck2Ck3/zı1C2C3
�
d!2;3I

(48)

the presence of the complex exponentials on the right hand side implies a quasi-
periodic transfer of energy. An efficient transfer is achieved if the so-called phase
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matching or resonant condition takes place:

k1 D k2 C k3; k1 D k3 � k2; k1 D �k3 � k2: (49)

As mentioned, three frequencies satisfying one of the equations in (47) and the
associated equations in (49) are said to be in resonance.

Equation (48) describes some of the well known physical phenomena of optical
wave propagation such as Sum-Frequency Generation, Difference-Frequency Gen-
eration, Second-Harmonic Generation, Optical Rectification, and the Three-Wave
Resonant Interaction system. Just to give an example, in the next section we will
give a straightforward derivation of the equations for Second Harmonic Generation
and for the Three-Wave Resonant Interaction (3WRI) system, see [17, 18].

4.1.1 Second-Harmonic Generation Model

Let us assume that the variable A.!; z/ is the sum of a wave whose frequency is !p

and a second one with frequency ! D 2!p as follows:

A.!; z/ D A!p.z/ı.! � !p/C A2!p.z/ı.! � 2!p/: (50)

Plugging such expression in (48), we get immediately the following two equations:

i
dA2!p.z/

dz
D V2!p;!p;!pA!p.z/

2e�iŒ2k!p�k2!p �z

i
dA!p.z/

dz
D 2V!p;!p ;2!pA!p.z/

�A2!p.z/eiŒ2k!p�k2!p �z

(51)

with

V2!p;!p;!p D V!p;!p;2!p D 1p
2c2

!3pq
k2!pk2!p

�
.2/
2!p ;!p;!p

; (52)

where the first equality results from the fact that �.2/2!p ;!p;!p D �
.2/
!p;!p ;2!p

. It should
be noted, once more, that in order to derive such set of equations, using the electric
field as a variable, one needs to assume that the variation of its amplitude over one
wave length is small, i.e. j@2E.!; z/=@z2j � kj@E.!; z/=@zj; within the new normal
variable, such hypothesis is not needed. In the case of phase matching condition,
2k.!p/ D k.2!p/, the equations can be further simplified.

In general the Second-Harmonic Generation model can be derived also for
surface waves with the particular attention that, while for capillary-gravity or pure
capillary waves, the phase matching condition can be satisfied, this is not possible
for pure gravity waves.
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4.1.2 The Three-Wave Resonant Interaction System

Here, we will derive from Eq. (46) the 3WRI system for which recently rogue wave
solutions have been found [19]. The idea is to assume that the wave field is the result
of the following superposition of narrow band fields centred in !A, !B, !C:

a.!/ D A.! � !A/e
�ik.!A/z C B.! � !B/e

�ik.!B/z C C.! � !C/e
�ik.!C/z: (53)

We then assume that waves are in resonance according to the following process:

!A D !B C !C and k.!A/ D k.!B/C k.!C/I (54)

The derivation consists in the following four straightforward steps:

1. Plug Eq. (53) in Eq. (46).
2. Taylor expand A, B and C around !A, !B, !C. Use the first-order expansion in

the linear term and the leading order one in the nonlinear part of the equation.
3. Use Eq. (54) to neglect unimportant terms.
4. Write equations in physical space using the definition of the Fourier Transform.

The resulting equations are the following:

@A

@z
C 1

vA

@A

@t
D CiqBC

@B

@z
C 1

vB

@B

@t
D CiqAC�

@C

@z
C 1

vC

@C

@t
D CiqAB�;

(55)

with

q D 1p
2

!A!B!Cp
k.!A/k.!B/k.!C/

�.2/!A ;!B;!C ; (56)

where vA, vB and vC are the group velocities of the three wave systems. Note that
the equation is written in physical variables. The system is integrable via the Inverse
Scattering Theory [20]. The above system cannot be derived for pure surface gravity
waves; however, it has been derived in hydrodynamics in the context of capillary-
gravity waves, see for example [21].
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4.2 Four-Wave Interactions in Pure �.3/ Media

We now assume that the medium is ruled exactly by cubic nonlinearity or four-wave
interactions. In other words we assume that �.2/1;2;3 is identically zero. Under this
assumption, Eq. (43) reduces to the following one:

i
@a1
@z

D k1a1 C
Z

T1;2;3;4

�
1

3
a2a3a4ı1�2�3�4 C a�

2a3a4ı1C2�3�4

C a�
2a

�
3a4ı1C2�3�4 C 1

3
a�
2a

�
3a

�
4 ı1C2C3C4

�
:d!2;3;4

(57)

Depending on the functional form of �.1/.!/, some interactions may be resonant,
i.e. some of the following conditions may be satisfied:

!1 C !2 � !3 � !4 D 0; k1 C k2 � k3 � k4 D 0;

!1 � !2 � !3 � !4 D 0; k1 � k2 � k3 � k4 D 0;

!1 C !2 C !3 � !4 D 0; k1 C k2 C k3 � k4 D 0;

!1 C !2 C !3 C !4 D 0; k1 C k2 C k3 C k4 D 0:

(58)

If only the first of the above equations can be satisfied, as the case of surface gravity
waves, then the second, third and fourth terms in the integral in (57) can be removed
by an asymptotic transformation (see next section where non-resonant three-wave
interactions are removed). The following equation is then obtained:

i
@a1
@z

D k1a1 C
Z

T1;2;3;4a
�
2a3a4ı1C2�3�4d!2;3;4; (59)

where T1;2;3;4 is

T1;2;3;4 D 3

4

�
.3/
1;2;3;4

c2
!1!2!3!4p
k1k2k3k4

; (60)

The above equation has the same structure of the Zakharov equation derived
for surface gravity waves, see Eq. (24). It is straightforward to show that the
corresponding Hamiltonian is

H D
Z

k1ja1j2d!1 C 1

2

Z
T1;2;3;4a

�
1a

�
2a3a4ı1C2�3�4d!1;2;3;4: (61)

i.e. the same as the Hamiltonian (25) where space and time are interchanged.
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4.2.1 The NLS Equation in Optical Waves

Let us consider the narrow band approximation of Eq. (59). Under such hypothesis,
at the leading order, T.!1; !2; !3; !4/ D T.!0; !0; !0; !0/ D T0;0;0;0 D const; the
linear dispersion relation can be expanded around ! D !0 as

k.!/ D k0 C˝
@k

@!

ˇ̌
ˇ̌
!0

C˝2 1

2

@2k

@!2

ˇ̌
ˇ̌
!0

C : : : ; (62)

with˝ D !�!0 and k0 D k.!0/. Performing the rotation a.z; t/ D b.z; t/e�ik0z and
using the definition of the Fourier transform, the evolution equation can be written
in physical space as:

i

�
@b

@z
C 1

cg

@b

@t

�
D ˇ2

2

@2b

@t2
C � jbj2b (63)

with

1

cg
D dk

d!

ˇ̌
ˇ̌
!0

; ˇ2 D � d2k

d!2

ˇ̌
ˇ̌
!0

;

� D T0;0;0;0 D 3

4

�
.3/
0;0;0;0

c2
!40
k20

D 3

4

�
.3/
0;0;0;0!

2
0

1C �.1/
:

(64)

We recall that �.3/ is real. Note that if one is interested in an evolution equation for
a variable that has the dimensions of the electric field, then one has to introduce the
following variable A:

A D
p
2j!0jp
k0

b (65)

to get:

i

�
@A

@z
C 1

cg

@A

@t

�
D ˇ2

2

@2A

@t2
C 3

8

�
.3/
0;0;0;0k0
1C �.1/

jAj2A: (66)

A detailed comparison of the NLS equation in an optical fiber and in one
dimensional surface gravity waves is given in [5].

A generalised NLS equation can be derived from Eq. (59) if the dispersion
relation is expanded to higher-order in both the linear (dispersive) and nonlinear
terms.
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4.3 Four-Wave Mixing in a �.2/ and �.3/ Medium

We now consider the case that three- and four-wave interactions are both not
negligible; we also assume that three-wave resonant interactions are not allowed
and the only possible phase-matched interaction is the following:

!1 C !2 � !3 � !4 D 0; k1 C k2 � k3 � k4 D 0; (67)

This is exactly the same situation encountered in the problem of surface gravity
waves. As shown before in Sect. 3.1, all non-resonant interactions may be removed
from the dynamics by a suitable near identity transformation of the form:

a1 D b1 C
Z

A.1/1;2;3b2b3ı1�2�3d!2;3 C
Z

A.2/1;2;3b
�
2b3ı1C2�3d!2;3

C
Z

A.3/1;2;3b
�
2b

�
3 ı1C2C3d!2;3 C

Z
B.1/1;2;3:4b2b3b4ı1�2�3�4d!2;3;4

C
Z

B.2/1;2;3;4b
�
2b3b4ı1C2�3�4d!2;3;4 C

Z
B.3/1;2;3:4b

�
2b

�
3b4ı1C2C3�4d!2;3;4

C
Z

B.4/1;2;3;4b
�
2b

�
3b

�
4 ı1C2C3C4d!2;3;4:

(68)

A.i/, B.i/ are coefficients that are selected in order to remove the undesired terms.
The algebra is quite lengthy and we refer to [7] and [8] for details. It can be shown
that the transformation is canonical, see [7]. The coefficient A.i/1;2;3 turns out to be
given by

A.1/1;2;3 D � V1;2;3
k1 � k2 � k3

; A.2/1;2;3 D � 2V1;2;3
k1 C k2 � k3

; A.3/1;2;3 D � V1;2;3
k1 C k2 C k3

:

(69)

Clearly, if one of the three-wave phase-matched conditions is satisfied, then A.i/1;2;3
diverge and the transformation is not applicable. In the new canonical variables
fb; b�g the evolution equation is given by:

i
@b1
@z

D k1b1 C
Z

QT1;2;3;4b�
2b3b4ı1C2�3�4d!2d!3d!4; (70)

where the coupling coefficient takes the following form:

QT1;2;3;4 D T1;2;3;4 C W1;2;3;4; (71)

with W1;2;3;4 given in the appendix. Essentially, QT1;2;3;4 contains also some informa-
tion about the non resonant three-wave interactions: physically speaking, it could be
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said that the long time behaviour of non-resonant three-wave interactions leads to
resonant four-wave interactions. Note once more that Eqs. (59) and (70) are written
as evolution equations in space and not in time as Eq. (24). Nonetheless, it has been
shown in [22] that also for surface gravity waves it is possible to derive a Zakharov
equation that evolves in space.

Following the procedure explained in Sect. 4.2.1, the NLS equation can also be
derived from Eq. (70); the only difference with respect the previous calculation is
that now � D QT0;0;0;0. Effect of three-wave interactions may be important: in surface
gravity waves, such terms may reduce the strength of the nonlinearity and, below
a critical value of the wave number (for a given water depth), the NLS equation
becomes of defocusing type.

4.4 The Stokes Expansion in Optical Waves

The canonical transformation hides asymptotic nonlinear stationary solutions of the
Maxwell equation for a non-resonant �.2/ medium. In order to appreciate that, for
simplicity, we consider the transformation up to second-order. Taking into account
the relation (42) between the normal variable and the electric field, E, we can write

E.z; t/ D
Z

E.z; !/e�i!td! D i
Z j!jp

2k.!/
Œa.!; z/C a.�!; z/� e�i!td! C : : :

(72)

We consider a monochromatic wave solution of the form:

b.!; z/ D jb0jı.! � !0/eik0z (73)

Introducing the solution in the canonical transformation, Eq. (68), up to second-
order, after some lengthy algebra we get:

E.z; t/ D ˇE20 C E0 cos.k0z � !0t/C ˛E20 cos.2.k0z � !0t// (74)

where

E0 D 2j!0jp
2k0

jb0j2 (75)

˛ D
�
A.1/2!0;!0;!0 C A.3/�2!0;!0;!0

� 2k0p
2k2!0 j!0j

ˇ D lim
�!0

�
A.2/�;!0;!0 C A.2/��;!0;!0

	 k0j�jp
2k�j!20 j

:

(76)
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Equation (74) is a stationary weakly nonlinear solution of the Maxwell equation in
a �.2/ medium. It corresponds to the second-order travelling wave solution found by
Stokes [23], for the Euler equation for surface gravity waves. Note that the second-
harmonic travels at the speed of the fundamental wave, i.e. it does not obey to the
linear dispersion relation. A zero frequency contribution also appears in the solution:
its value is related to the nonlinear response of the material as ! ! 0. This delicate
issue, related to optical rectification [17], will be addressed separately in the near
future.

5 Discussion and Conclusions

Our aim has been to build a bridge between optics and hydrodynamics on a more
general framework than the NLS equation. Indeed, in the past the latter has provided
very interesting insights, especially in the field of rogue waves where it has been
shown that its analytical solutions can be observed with some degree of accuracy
both in hydrodynamics and in optics [24–27]. Here, the perspective discussed is
more general and it is based on the similarity between the Maxwell equations
in a medium and the Euler equations for surface waves once they are written in
the so-called normal variables. Such variables, introduced by Zakharov [3] in the
field of ocean waves, are very powerful and convenient for a number of reasons,
see [28]. In our context, once the equations are written in such variables, they
appear formally identical (the dispersion relation and the coefficient in front of the
nonlinear terms are different), compare Eqs. (19) and (43). In general, in nonlinear
optics there are some degrees of freedom in the dynamics because the dispersion
relation can be changed and, according to it, different phenomena can be observed.
For example, the dispersion relation can be chosen in such a way that three-wave
interactions are in resonance (phase-matched condition). In this case we have shown
that it is straightforward to derive simpler models such as the Second-Harmonic
Generation model or the Three-Wave System. Three-wave resonant interactions,
although accessible for capillary waves, are forbidden for surface gravity waves due
to the concavity of the dispersion relation. In this regime, expanding the dispersion
relation and the nonlinear coefficients in the nonlinear terms for long waves leads
to equation of the Korteweg-De Vries type (see the contributions by T. Grava and
the one by M. Conforti and S. Trillo in the present volume). The result is obtained
when the dispersion relation is an odd function and becomes linear as k ! 0.

If three-wave resonances are absent, then the so-called Zakharov equation, very
well known in the context of surface gravity waves, can be derived also in optics.
This is a very general equation that has no limitation on the spectral bandwidth;
moreover, it is a very good starting point for a statistical description of four-
wave interactions [29], see also the contributions by P. Janssen, by Shrira and
by Picozzi et al. in the present volume. The derivation of the NLS equation is
then straightforward. Higher-order approximations, which includes terms of self-
steepening and third-order dispersion, can be derived if the dispersion relation is
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expanded to third-order. The canonical transformation adopted to remove the non
resonant term has a very interesting physical meaning: indeed, it is possible to derive
from it the so-called Stokes expansion.
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Appendix

Coupling coefficient of the Zakharov equation (70) in optical waves in the presence
of �2 and �3 media:

QT1;2;3;4 D T1;2;3;4 C W1;2;3;4; (77)

with

W1;2;3;4 D �V1;3;1�3V4;2;4�2
�

1

k3 C k1�3 � k1
C 1

k2 C k4�2 � k4

�

� V2;3;2�3V4;1;4�1
�

1

k3 C k2�3 � k2
C 1

k1 C k4�1 � k4

�

� V1;4;1�4V3;2;3�2
�

1

k4 C k1�4 � k1
C 1

k2 C k3�2 � k3

�

� V2;4;2�4V3;1;3�1
�

1

k4 C k2�4 � k2
C 1

k1 C k3�1 � k3

�

� V1C2;1;2V3C4;3;4
�

1

k1C2 � k1 � k2
C 1

k3C4 � k3 � k4

�

� V�1�2;1;2V�3�4;3;4
�

1

k1C2 C k1 C k2
C 1

k3C4 C k3 C k4

�
:

(78)
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Integrability in Action: Solitons, Instability
and Rogue Waves

Antonio Degasperis and Sara Lombardo

Abstract Integrable nonlinear equations modeling wave phenomena play an
important role in understanding and predicting experimental observations. Indeed,
even if approximate, they can capture important nonlinear effects because they
can be derived, as amplitude modulation equations, by multiscale perturbation
methods from various kind of wave equations, not necessarily integrable, under
the assumption of weak dispersion and nonlinearity. Thanks to the mathematical
property of being integrable, a number of powerful computational techniques is
available to analytically construct special interesting solutions, describing coherent
structures such as solitons and rogue waves, or to investigate patterns as those
due to shock waves or behaviors caused by instability. This chapter illustrates a
selection of these techniques, using first the ubiquitous Nonlinear Schrödinger
(NLS) equation as a prototype integrable model, and moving then to the Vector
Nonlinear Schrödinger (VNLS) equation as a natural extension to wave coupling.

1 Introduction to Integrability and Solitons

Many nonlinear partial differential equations which model dispersive wave prop-
agation possess solitary wave solutions. In most physical contexts these special
solutions describe the motion in one, two or three-dimensional space of a bump,
possibly modulating a carrier plane-wave, whose profile depends on the particular
nonlinear terms which appear in the wave equation itself. Among the nonlinear
wave equations which have been derived in many physical applications, we consider
here those special ones which prove to be integrable and model wave motion in 1-
dimensional space. The solitary wave solutions of integrable equations, because of
their exceptional mathematical properties, have been termed solitons [1]. The first
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observation of a soliton dates back to 1834 (John Scott Russell’s wave of translation
[2]). Among the peculiar properties which are distinctive of integrability, we point
out the following (see also Sect. 2):

• existence and explicit construction of infinitely many independent conservation
laws;

• existence and explicit construction of N-soliton solutions, for any N;
• existence of a nonlinear generalization of the Fourier transform, the Spectral

transform, which provides a tool to investigate the solution of special initial-
boundary value problems.

Because of these properties, integrable nonlinear wave equations may be understood
as the limit to infinitely many degrees of freedom of classical Liouville-integrable
dynamical systems. Some of these integrable wave equations are relevant as
approximate models in various physical contexts. In these cases one may say
that Nature and Mathematics go well hand in hand as the powerful methods of
integrability allow for analytical description/prediction of wave behaviors.

The reader who is not familiar with the theory of integrable systems, and, in
particular, with the theory of solitons, may find it of interest to have a preliminary
look at the following rather long, and yet partial, list of model equations of physical
interest which have been proven to be integrable (t is the evolution variable and x is
the space coordinate, while partial differentiation is indicated by a subscript)

• Korteweg-de Vries (KdV) equation:

ut � uxxx D 6uux (1)

• Benjamin-Ono (BO) equation:

ut � Huxx D uux (2)

where the Hilbert operator H is defined as Hf .x/ D 1
�
P
R1

�1 dy f .y/
y�x

• complex modified Korteweg de Vries (cmKdV) equation:

ut � uxxx D 6sjuj2ux ; s D ˙1 (3)

• Sine-Gordon (SG) equation:

utt � uxx D � sin u (4)

• Nonlinear Schrödinger (NLS) equation:

iut C uxx D 2sjuj2u ; s D ˙1 (5)

(continued)
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• Long Wave-Short Wave (LWSW) equation:

iut C uxx C vu D 0 ; vt D .juj2/x (6)

• Derivative Nonlinear Schrödinger (DNLS) equation:

iut C uxx D is.juj2u/x ; s D ˙1 (7)

• Massive Thirring Model (MTM):

iu1t C iu1x � u2 D ju2j2u1
iu2t � iu2x � u1 D ju1j2u2 (8)

• Vector Nonlinear Schrödinger (VNLS) equation:

iujt C ujxx D 2

 
NX

nD1
snjunj2

!
uj ; j D 1; � � � ;N (9)

where sn D ˙1. For N D 2, s1 D s2 D �1 this is the Manakov model.
• Three Wave Resonant Interaction (3WRI) equations:

u1t C V1u1x D u�
2u

�
3

u2t C V2u2x D �u�
1 u

�
3

u3t C V3u3x D u�
1 u

�
2

(10)

where the asterisk denotes complex conjugation and where V1, V2 and V3
are real constants.

All these nonlinear integrable equations have the common property of being the
condition that two linear first order homogeneous ordinary differential equations,
one with respect to the variable x and the other with respect to the variable t, be
compatible with each other. This pair of linear equations is commonly referred to as
Lax pair. In order to clarify and detail this scheme, we give here few examples,
which may serve as well as guidelines for further computational exercises. In
general a linear homogeneous ordinary differential equation with respect to the
variable y takes the form

 y D M.y/ ;  D  .y/ ; (11)
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where M is a N � N matrix whose entries are functions of the independent variable
y, and  .y/ is a N-dimensional vector solution. Thus in this notation a Lax pair
reads as

 x D X ;  t D T ;  D  .x; t/ ; (12)

where X and T are N � N matrices and the vector  is required to solve both
equations. It is plain that, for a generic choice of X.x; t/ and T.x; t/, only the trivial
solution  D 0 solves the pair of Eqs. (12), whereas a non vanishing solution  
exists if the compatibility condition  xt D  tx holds true, namely, as implied by
(12), if the matrices X, T satisfy the equation

Xt C XT D Tx C TX; or Xt � Tx C ŒX;T� D O ; (13)

where ŒA ; B� D AB � BA and O stands for the zero matrix. It is moreover crucial
for the integrability that the matrices X, T depend also on a complex variable 	, the
so-called spectral variable, say X D X.x; t; 	/, T D T.x; t; 	/, with the additional
strong requirement that the compatibility condition (13) holds for any value of 	.
The following few explicit examples illustrate how indeed some of the integrable
equations in the list above follow from compatibility conditions of the form (13). To
this aim let X be the 2 � 2 traceless matrix

X D i	
3 C Q.x; t/ ; 
3 D
�
1 0

0 �1
�
; Q.x; t/ D

�
0 v.x; t/

u.x; t/ 0

�
: (14)

This is the simplest choice since X.x; t; 	/ is polynomial of first degree in the
spectral variable 	 while its dependence on x and t comes through the functions
u.x; t/ and v.x; t/ which will eventually play the role of wave fields. As for the
second equation of the Lax pair (12), the matrix T.x; t; 	/ may be taken as a third
degree polynomial

T D 	3T3 C 	2T2 C 	T1 C T0 : (15)

In this case both sides of the compatibility equation (13) are fourth degree
polynomials in 	 so that Eq. (13) yields five matrix algebraic/differential equations
which can be easily solved (this step being left to the diligent reader). The solution
of these equations can be conveniently given as the following expression of the four
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matrix coefficients Tj [see (15)]:

T3 D �4ic3
3
T2 D �4c3Q C 2ic2
3
T1 D 2ic3
3.Qx � Q2/C 2c2Q
T0 D c3.ŒQ ; Qx�C Qxx � 2Q3/� ic2
3.Qx � Q2/

(16)

while the additional fifth equation

Qt D c3.Qxxx � 6Q2Qx/ � ic2
3.Qxx � 2Q3/ (17)

yields the dispersive nonlinear wave equation for the matrix Q.x; t/, namely for its
two entries u.x; t/, v.x; t/. The two parameters c3 and c2 are arbitrary. It is now left
to the reader to verify that the KdV equation, the cmKdV equation and the NLS
equation which appear in the list of integrable wave equations given above are just
special cases of the evolution equation (17). Precisely, the choice c3 D 1, c2 D 0

and the reduction condition v D �1 yields the KdV equation (1), while setting again
c3 D 1, c2 D 0 but with the condition v D �su�, s D ˙1, leads to the cmKdV
equation (3), and finally the NLS equation (5) corresponds to the choice c3 D 0,
c2 D 1 together with the reduction v D su�, s D ˙1.

Different choices of the two matrices X, T which appear in the Lax pair (12)
generate, by the same scheme based on the compatibility equation (13), different
integrable nonlinear (systems of) partial differential equations. For instance, if X
and T are still 2� 2 but their dependence on the spectral variable 	 is rational rather
than polynomial, one may obtain the SG equation (4) and the MTM (8). If instead
X and T are higher rank R > 2, the 3WRI system (10), the LWSW (6) equations as
well as the Manakov model [(9) for N D 2], are obtained for R D 3, while the rank
R D N C 1 is required to derive the system of N coupled NLS equations (9).

Once a nonlinear wave equation has been associated to a Lax pair according to
the method we have sketched here, what is this association good for?

The answer to this question is contained in the huge collection of research results
which accumulated during the last half-century. Thus we conclude this section
with a list of works on the subject which is neither exhaustive nor complete, but
which may guide the interested reader in the vast land of integrability and its
applications. A starting point for a reader with no previous exposure to integrability
are the books [3, 4] which present an overview of solitons in applications. These
are complemented by more classical (and at times more detailed) textbooks such
as [5–13]. An overview on the origin of soliton theory and a fairly complete set of
references of its origins can be found in [14]. A more mathematical introduction
to the theory of integrable systems is presented in [15]. This text complements
collections such as [16, 17] and classical textbooks such as [18, 19]. In [20] the
universality of integrable systems is well explained, whereas the link with multiple
scale analysis is given in [21] and reference therein. An introduction to the theory of
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nonlinear waves can be found in the monographs [22–25]. As the NLS equation
plays a central role in our exposition, we draw the reader’s attention to a few
monographs on this fundamental model [19, 26–28].

2 Integrability in Action: The NLS Equation as Study Case

The Nonlinear Schrödinger (NLS) equation

iut C uxx D 2sjuj2u ; s D ˙1 ; (18)

has been first derived [29] in optics in the self-focusing case s D �1. However it
arose again and again in different physical contexts, and it has been then recognized
as a universal equation that models amplitude modulation of a quasi-monochromatic
wave due to weak nonlinearities. Its universality stems from its derivation by
multiscale perturbation theory [20, 21, 30, 31] from very large families of nonlinear
dispersive wave equations (the nonlinear terms being treated as perturbation of the
linear ones) which includes for instance Maxwell equations in Kerr and �2 media,
Euler equations in ocean physics and Einstein gravitational field equations, among
many others. In particular it can be derived by multiscale perturbation also from
integrable equations, e.g. from the SG, KdV and cmKdV equations (see Sect. 1).
Though its integrability has been discovered independently [32], from this very last
fact one can predict that indeed the NLS equation should be integrable itself [20].
The aim of this section is to shortly illustrate a number of important consequences
of the Lax pair associated to the NLS equation. In particular, we first show how
to derive infinitely many local conservation laws. It is also shown here that the
technique of transforming the Lax pair by a Darboux transformation leads to the
algebraic construction, from a known solution, of a novel solution of the NLS
equation.

2.1 Conservation Laws from the Lax Pair

Let us first consider how to obtain from the Lax pair an infinite sequence of local
conservation laws,

�
.n/
t C f .n/x D 0 ; n D 1; 2; : : : ; (19)

where the functions �.n/.x; t/ and f .n/.x; t/ are the conserved densities and, respec-
tively, the corresponding currents. The method we follow here is applicable to
solutions of the NLS equation (18) which vanish sufficiently fast as the variable
jxj goes to infinity, namely u.x; t/ ! 0 as x ! ˙1. The extension to different
boundary conditions is possible with some extra technical efforts. The Lax pair
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associated to the NLS equation is given by (12) where the matrices X and T are
respectively given by (14), where v D su�, and by (15) and (16) with c3 D 0,
c2 D 1. Since it is convenient to proceed by performing our computation in the
algebra of matrices, we consider now the 2 � 2 matrix �.x; t; 	/ whose column
vectors are two linearly independent solutions of the Lax pair, namely

�x D X� ; �t D T� : (20)

When x ! ˙1 the matrix Q vanishes and the matrix solution � goes to a solution
�.˙/ of the Lax pair with Q D 0. Just for mere sake of convenience, we choose the
solution � which satisfies the boundary condition

� ! �.�/ D expŒi	
3.x C 2	t/� ; x ! �1 : (21)

It is also convenient to introduce the matrix ˚.x; t; 	/ D �.�.�//�1 which satisfies
the pair of equations

˚x D i	Œ
3 ; ˚�CQ˚ ; ˚t D 2i	2Œ
3 ; ˚�C .2	QC i
3Q
2� i
3Qx/˚ : (22)

More conveniently to our purposes, we rewrite these equations in the following form



.
3˚/x D i	.˚ � 
3˚
3/C 
3Q˚
.
3˚/t D 2i	2.˚ � 
3˚
3/C .2	
3Q C iQ2 � iQx/˚

(23)

which shows that the two functions

R.x; t; 	/ D tr.
3Q˚/ ; F.x; t; 	/ D �trŒ.2	
3Q C iQ2 � iQx/˚� ; (24)

where tr(M) stands for the trace of the matrix M, satisfy, by cross-differentiating the
two Eqs. (23), the conservation equation

Rt C Fx D 0 : (25)

Note that this continuity equation is direct consequence of the Lax pair (20) and that
it depends on the spectral variable 	 through the matrix ˚ [see the definition (24)].
It now remains to extract from this last Eq. (25) conserved densities and currents
whose expression contains only the solution u.x; t/ of the NLS equation (18). This
step is done via the following theorem:

Theorem 1 The matrix ˚.x; t; 	/ which solves the system (22), with the boundary
value ˚ ! 1 as x ! �1, has the following asymptotic expansion as j	j becomes
very large, say around the point at infinity of the 	-plane,

˚ D 1 C 1

	
˚1 C 1

	2
˚2 C 1

	3
˚3 C : : : (26)

where the matrix coefficients ˚n depend only on x and t.
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The computation of these coefficients ˚n can be done recursively by inserting
the expansion (26) into the first of the differential equations (22), and by splitting
the matrix ˚ into its diagonal part ˚.d/ and its off-diagonal part ˚.o/, namely ˚ D
˚.d/C˚.o/. By taking into account the boundary condition˚ ! 1 as x ! �1 [see
(21)], the upshot of these computations is summarized by the following formulae (in
self evident notation)

˚
.d/
0 D 1 ; ˚

.o/
0 D 0 ; ˚

.d/
n D R x

�1 dyQ.y; t/ ˚.o/
n .y; t/ ; n � 1

˚
.o/
nC1 D 1

2i
3.˚
.o/
nx � Q˚.d/

n / ; n � 0 :

(27)

Note that this recursion equations generate the expression of all coefficients˚.d/
n and

˚
.o/
n in a way that is well suitable to symbolic computation. Equation (25) clearly

yields infinitely many local conservation laws via the expansions

R D 1

	
R1 C 1

	2
R2 C 1

	3
R3 C : : : ; F D 1

	
F1 C 1

	2
F2 C 1

	3
F3 C : : : ; (28)

namely

Rnt C Fnx D 0 ; n � 1 : (29)

Here we give the first three conserved quantities and leave the computation of the
currents to the interested reader. It is convenient to define the conserved densities as

�n D is 2n�1Rn D is 2n�1tr.
3Q˚.o/
n / ; n � 1 ; (30)

and the time-independent quantities, i.e. the constants of the motion, as

Cn D
Z C1

�1
dx �n.x; t/ ; n � 1 ; (31)

to arrive at the well known expressions

C1 D
Z C1

�1
dxjuj2 ; C2 D

Z C1

�1
dx Im.uu�

x / ; C3 D H � 1

6
C31 ; (32)

where the functional

H D
Z C1

�1
dx.juxj2 C sjuj4/ ; (33)
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is the standard Hamiltonian which yields the NLS equation (18) via the Hamilton
equation

ut D �i
ıH

ıu� : (34)

2.2 The Initial Value Problem and Particular Solutions

Before proceeding further we shortly comment on the way the Lax pair (20) gives
the method of investigating the initial value problem u.x; 0/ ! u.x; t/ for the NLS
equation (18). This method generalizes the well known Fourier analysis as applied
to a linear equation with constant coefficients, for instance the linear Schrödinger
equation iutCuxx D 0. In the linear case, one introduces the Fourier Transform (FT)
of the solution

Ou.k; t/ D
Z C1

�1
dx eikxu.x; t/ (35)

together with its simple time dependence Ou.k; t/ D Ou.k; 0/e�ik2t and then one
performs the chain of steps

u.x; 0/ ! Ou.k; 0/ ! Ou.k; t/ ! u.x; t/:

Note that in the last step it is essential that the Fourier map u.x; t/ ! Ou.k; t/ (35) be
invertible. Note also that we are dealing here with the class of solutions u.x; t/ which
vanish as jxj ! 1 sufficiently fast so that their Fourier integral is well defined. The
initial value problem for the NLS equation (18) can be investigated in a similar way.
In this case the Fourier transform has to be replaced by a new transform known as
the spectral transform (or scattering transform) (ST). The map u.x; t/ ! ST which
takes the solution u.x; t/ into its spectral transform ST is computed by considering
the first equation of the Lax pair (20) as the eigenvalue problem [see (14)]

L� D 	� ; L � �i
3@x C i
3Q ; (36)

for the differential operator L. While we refer the reader to textbooks, e.g. [6, 12],
for details, we limit ourself to pinpoint here differences and similarities between the
ST and the FT. In the FT (35) the spectral variable k takes its values on the real line,
which is also the continuum spectrum of the differential operator L. In contrast, the
ST is defined not only on the continuum spectrum of L but also, if it exists, on its
discrete spectrum which consists of a finite number of complex values of k. The
solutions of the NLS equation which correspond to these discrete eigenvalues are
the soliton solutions. Like the FT, also the ST has the similarly simple and explicit
exponential dependence on the time variable t, namely the nonlinear mapping
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u.x; t/ ! ST.t/ transforms the nonlinear dynamics of the NLS equation into a trivial
linear dynamics. It is moreover easy to show that the approximate expression of the
ST obtained by linearizing the nonlinear transformation u.x; t/ ! ST.t/ reduces, on
the continuum spectrum, to the FT. Similarly to the linear case, also for the NLS
equation the solution of the initial value problem goes via the steps

u.x; 0/ ! ST.0/ ! ST.t/ ! u.x; t/;

the last one requiring the (hard) task of reconstructing u from its ST. The problem of
inverting the nonlinear map u.x/ ! ST is very important in many applications, e.g.
in medical imaging techniques and earth’s crust geophysics, and it is a research field
on its own known as inverse problem. The application of the mathematical methods
of the inverse problem to the solution of nonlinear integrable wave equations is a
well established technique known as IST, namely Inverse Spectral Transform, see
e.g. [12], or Inverse Scattering Transform, see e.g. [6, 13].

The physical significance of the solutions corresponding to the continuum
spectrum is of dispersive wave packets in contrast with the solutions corresponding
to the discrete spectrum which are instead multi-soliton solutions. In this respect
we notice that in the defocusing case s D 1, the operator L [see (36)] is formally
Hermitian, L
 D L, with the implication that all eigenvalues are real; in this case
therefore no discrete spectrum is possible and the defocusing NLS equation has no
soliton solutions. This is not the case for the focusing NLS with s D �1 which
possesses bright soliton solutions since L
 ¤ L. These conclusions drastically
change if the solutions of the NLS equation do not vanish as jxj goes to infinity.
In the class of solutions which are required to behave as plane waves (see e.g. (47))
with ju.x; t/j ! a D constant amplitude as jxj ! 1, the ST of u has been as well
defined and the method of solving the initial value problem has been extended to
cover this class of solutions in both the defocusing case s D 1 [19, 33–35] and in
the focusing case s D �1 [36]. In the defocusing case the NLS equation possesses
soliton solutions which behave as plane waves at the boundary. These solutions
are known as dark (grey or black) solitons. This occurs because the continuum
spectrum is the real axis with the finite gap �a < 	 < a within which real discrete
eigenvalues may exist (see e.g. Fig. 1, where a D 1). On the other hand, in the
focusing case, in addition to the continuum spectrum, a complex discrete spectrum
exists (see Sect. 3).

The spectral transform approach is able not only to deal with the initial value
problem but also to explicitly construct those solutions which correspond to a purely
discrete spectrum, namely the N-soliton solutions for any N. These special, yet
important, solutions can be obtained also by a simpler direct algebraic technique
which is known as the Darboux transformation (e.g. [37–40]), or Dressing method
(e.g. [10, 41, 42]).

We conclude this section by shortly illustrating this method, and by providing
the expression of the one soliton solution for solitons traveling in vacuum as well as
over a continuous wave background.
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Fig. 1 Defocusing NLS: Sx D x-part spectrum/St D t-part spectrum of u.0/ D exp.�2it/

Before doing this we point out that, as a general rule which applies to many
other wave models, the analytic expression of any explicitly known wave solution
depends not only on the variables x, t but also on a number of parameters which may
be related to physically relevant properties and features. In the following however,
we omit to show in the expression of the soliton solutions those arbitrary parameters
which can be inserted by taking into account the symmetries of the wave equation. In
the present case the following five symmetries, or transformations u.x; t/ ! u0.x; t/
that leave the NLS equation unchanged, can serve this purpose:

1. x-translation u0.x; t/ D u.x C �; t/
2. t-translation u0.x; t/ D u.x; t C �/

3. phase factor u0.x; t/ D ei�u.x; t/
4. rescaling u0.x; t/ D pu.px; p2t/
5. Galilei change of frame u0.x; t/ D ei

v
2 .x� v

2 t/u.x � vt; t/

The initial step of the Darboux approach consists in linearly transforming the
matrix solution of the Lax pair (20). Precisely, if �.0/ is a solution of the Lax pair
(20) with X, T replaced by X.0/, T.0/, and consequently Q replaced by Q.0/, the
Darboux transformation �.0/ ! � , reads

�.x; t; 	/ D D.x; t; 	/�.0/.x; t; 	/ ; (37)

where D is a 2 � 2 matrix. We first observe that this linear transformation implies
that also the new matrix � satisfies a compatible Lax pair of equations, namely
(20), where X D DX.0/D�1 C DxD�1 and T D DT.0/D�1 C DtD�1. Thus the new
matrices X, T satisfy themselves the compatibility equation (13) as a consequence
of the compatibility equation X.0/t C X.0/T.0/ D T.0/x C T.0/X.0/ of the original
Lax equations. Next one looks for a Darboux matrix D.x; t; 	/ which satisfies the
following (strong) conditions: (1) the new matrices X, T and the original ones X.0/,
T.0/ have the same structure (14) and (15) with (16); (2) the Darboux matrix has
a polynomial dependence on the spectral variable 	. To our present purpose we
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assume that this polynomial be first degree,

D.x; t; 	/ D 	1 � M.x; t/ ; (38)

where the matrix M.x; t/ has still to be found. To find it we use the symmetry
condition

˙D
.x; t; 	�/˙D.x; t; 	/ D ds.	/1 ; (39)

where˙ D 1 if s D �1 and˙ D 
3 if s D 1, and ds.	/ is a scalar x; t-independent
second degree polynomial. This condition follows from the property Q
 D sQ [or,
equivalently, v D su�, see (14)], and the pair of differential equations

Dx C DX.0/ D XD ; Dt C DT.0/ D TD ; (40)

which are implied by the Lax equations (20) together with the Darboux trans-
formation (37). Once the matrix M has been computed, inserting the Darboux
matrix expression (38) into the first of the two Eqs. (40) yields the expression
Q D Q.0/ C iŒ
3 ; M�, or more explicitly and in self-evident notation,

u D u.0/ � 2i M21 ; (41)

of the new solution u.x; t/ of the NLS equation. This expression can be given an
alternative form of more practical use by involving the constant eigenvalues ˛
and ˛� of M.x; t/, together with their corresponding eigenvectors. While we skip
detailing this computation, we limit our consideration here only to the focusing case
s D �1. Thus, for the focusing NLS equation the Darboux matrix is

D.x; t; 	/ D 	1 � ˛�1 � .˛ � ˛�/P D 	1 � ˛P � ˛�.1 � P/ ; (42)

where P.x; t/ is the projection matrix

P.x; t/ D 1

jz1j2 C jz2j2
� jz1j2 z1z�

2

z�
1 z2 jz2j2

�
; (43)

which projects on the eigenvector z.x; t/ of the matrix M (corresponding to the
eigenvalue ˛) with components z1.x; t/ and z2.x; t/. It turns out that this eigenvector
z is a vector solution of the original Lax pair with 	 D ˛, namely

zx D X.0/.x; t; ˛/z ; zt D T.0/.x; t; ˛/z : (44)



Integrability in Action 35

The expression (41) takes now the more explicit and standard form

u D u.0/ � 2i.˛ � ˛�/
z2z�

1

jz1j2 C jz2j2 : (45)

Note that here the complex number ˛ has to be strictly complex (Im ˛ ¤ 0) and
that it is going to be an arbitrary parameter in the new solution u.x; t/. It should be
also noticed that the applicability of the Darboux method obviously requires that the
solution u.0/ of the NLS equation, as well as the solution �.0/ of the corresponding
Lax pair, be known. Before going into applications of the Darboux technique, let
us summarize the computational scheme in the following steps: (1) fix the known
solution u.0/.x; t/ and �.0/.x; t; 	/, (2) give an arbitrary complex value ˛ to the
spectral variable, and fix an arbitrary constant vector � , (3) compute the vector
z.x; t/ D �.0/.x; t; ˛/� , (4) apply the explicit formula (45). We also note that the
constant vector � in step (3) introduces an arbitrary complex parameter.

The simplest exercise now is the construction of the bright soliton solution. The
starting known solution is the vacuum u.0/ D 0 and the solution obtained via the
Darboux method is

u D eitsech.x/ (46)

for ˛ D i=2 and � D .1 ; 1/. Moreover, the corresponding operator L (36) possesses
two discrete eigenvalues, 	1 D ˛ D i=2, 	2 D ˛� D �i=2 that are the roots of
the polynomial detD D .	 � ˛/.	 � ˛�/, see (42). Consider now the Darboux
construction of soliton solutions obtained when u.0/ is the continuous wave solution
of the focusing NLS equation:

u.0/.x; t/ D e2it : (47)

In this case the general formula (45) leads to the expression

u D e2it
�
1C cosh.�/

2 cosh.px/� e.�Ciqt/ � e�.�Ciqt/

cos.qt/ � cosh.�/ cosh.px/

�
(48)

where p D 2 sinh.�/, q D 2 sinh.2�/. This is a one-parameter family of solutions,
the parameter � taking both real values 0 � � < C1 and imaginary values
� D i� ; 0 < � < C1. As in the previous case the discrete eigenvalues of
the Lax equation (36) are on the imaginary axis of the 	-plane, 	1 D i cosh.�/,
	2 D �i cosh.�/, and are again the roots of detD. Further observations on this
solution will be reported in the next section. We finally note that the Darboux
technique can be applied in a similar way (with some extra care [43–45]) to the
defocusing case. As already mentioned above, in the defocusing regime no bounded
solutions are found if u.0/ D 0, while if u.0/ D exp.�2it/ the zeros of det D are
required to be real. The Darboux method can be extended to polynomial Darboux
matrices D.x; t; 	/ of higher degree in 	 so as to construct solutions of the NLS
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equation which describe the interaction of N solitons (e.g. [46, 47]). Moreover, this
method applies as well to other Lax pairs and therefore to other integrable equations,
f.i. to the VNLS equation (see Sect. 4) (e.g. [37, 40, 43–45, 48]).

3 NLS Equation: Linear Instability and Rogue Waves

Investigating the linear stability of a given solution u.0/.x; t/ of a nonlinear partial
differential equation goes via the following standard computational steps: (1)
linearizing the given nonlinear equation in the neighborhood of the given solution,
(2) finding a complete set of solutions of this linear equation which are everywhere
bounded in the space variables, (3) checking the boundedness of all these solutions
over the entire time evolution. It is sufficient that some of this complete set of
solutions of the linearized equation grow in time with no bound to declare that
given solution u.0/.x; t/ of the nonlinear equation is linearly unstable. In particular,
if the linearized equation is, or may be mapped into, an equation with constant
coefficients, then the complete set of its solutions is the set of Fourier (continuous
wave) exponentials of the type expŒi.kx � !t/�. In such simple case the solution
of the nonlinear equation is unstable if there exist real values of k such that the
corresponding frequency !.k/ has a non vanishing and positive imaginary part.

Here we show how the linear stability analysis can be alternatively handled if the
nonlinear partial differential equation is integrable. Consistently with the previous
section, we consider the integrability properties of the NLS equation (18), in both
the defocusing .s D 1/ and focusing .s D �1/ regimes. Again the basic tool is the
Lax pair (20) with (14). Let u.0/.x; t/ be the given solution of the NLS equation (18)
whose stability we aim to investigate. Then the linearized NLS equation around this
solution reads

i.ıu/t C .ıu/xx � 2su.0/2.ıu/� � 4sju.0/j2.ıu/ D 0 ; (49)

where the function ıu.x; t/ is the small deviation from the given solution u.0/,
namely u D u.0/ C ıu. Assume now that not only the solution u.0/.x; t/ is known,
but that it is also known the explicit expression of an invertible matrix solution
�.0/.x; t; 	/,

�.0/ D
 
 
.0/
11  

.0/
12

 
.0/
21  

.0/
22

!
; (50)

of the Lax pair (20) (with u replaced by u.0/). Then the following result provides the
link between the linearized equation (49) and the Lax pair.

Theorem 2 For any value of the variable 	, the function . .0/22 .x; t; 	//
2 satisfies

the linearized equation (49).
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Note that, for the vanishing solution u.0/ D 0, . .0/22 /
2 D expŒ�2i	.x C 2	t/�

coincides with the Fourier mode expŒi.kx � !t/�, with !.k/ D k2 and k D �2	, of
the linear Schrödinger equation [see (49)]. If u.0/ ¤ 0, in analogy with the previous
case, we learn that the solutions . .0/22 .x; t; 	//

2 of the linearized equation (49) play
the role of generalized Fourier modes. In this generic case the spectral variable 	
runs over the entire spectrum, both continuum and discrete (if any), of the x-part
differential equation of the Lax pair [see (36)]. If the solution u.0/ is such that its
corresponding functions . .0/22 .x; t; 	//

2, for some value of 	 in the spectrum, grows
with time with no bound, then this solution u.0/ is linearly unstable. In general the
computations required by this procedure may not be explicitly doable. However
for u.0/ D 0 and u.0/ D exp.�2ist/, i.e. for the vacuum and the continuous wave
solution, the method can be carried out in explicit form. The linear stability of
the vanishing solution is easily established for s D ˙1. As for the continuous
wave solution, in both the defocusing s D 1 and focusing s D �1 regimes, the
discrete spectrum is empty and so it remains to compute the continuum spectrum.
For the purpose of establishing the stability, it is convenient to compute the spectrum
associated to both equations of the Lax pair (20). The x-part spectrum Sx is defined
as the set of values of the spectral variable 	 such that the corresponding solution
�.0/ of the Lax equation�.0/

x D X.0/� .0/ is bounded on the entire x-axis at any fixed
time, and the t-part spectrum St is defined via the Lax equation �.0/

t D T.0/� .0/ in
just the similar way. More explicitly, the Lax pair of equations for the matrix solution
(50) reads

8̂
ˆ̂<
ˆ̂̂:

�
.0/
x D

�
i	 su.0/�
u.0/ �i	

�
�.0/

�
.0/
t D

 
2i	2 C isju.0/j2 2	su.0/� � isu.0/�x

2	u.0/ C iu.0/x �2i	2 � isju.0/j2
!
�.0/ :

(51)

The solution of these equations with u.0/ D exp.�2ist/ can be conveniently
written as

�.0/.x; t; 	/ D
�
eist 0

0 e�ist

�
ei.xW�tF/ ; (52)

where the two matrices

W D
�
	 �is
�i �	

�
; F D

��2	2 2is	
2i	 2	2

�
D �2	W (53)

depend only on 	. Next we compute the eigenvalues ˙w and ˙f of the matrices W
and F, respectively. If g˙ are their corresponding common eigenvectors, it follows
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that Wg˙ D ˙wg˙ ; Fg˙ D ˙fg˙ with

w D
p
	2 � s ; f D �2	

p
	2 � s : (54)

The implication is that the Fourier modes take the vector expression

�.0/.x; t; 	/g˙ D e˙i.wx�ft/

�
eist 0

0 e�ist

�
g˙ ; (55)

which clearly show the spectra Sx and St. Indeed, in the defocusing case s D 1,
the “wave number” w is real if and only if 	 is real but off the forbidden gap
�1 < 	 < 1.

So the spectrum Sx D f�1 < 	 � �1g ˚ f1 � 	 < C1g . On the t-side, f is
real if and only if 	 2 St where St D Sx ˚ f	 D i�;�1 < � < C1g , see Fig. 1.
Since whenever w is real also f is real, we conclude that in this case the continuum
wave solution u.o/ D exp.�2it/ is linearly stable.

Considering now the focusing case s D �1; by reasoning in a similar way one
derives from the expression (55), with (54), the x-spectrum, Sx D f�1 < 	 <

C1g ˚ f	 D i�;�1 � � � C1g while the t-spectrum is St D f�1 < 	 <

C1g ˚ f	 D i�;�1 < � � �1g ˚ f	 D i�;C1 � � < C1g , see Fig. 2.
In this case the imaginary values of 	 in the interval �1 < Im	 < C1 belong to

Sx but not to St, and therefore the solution u.0/ D exp.2it/ is linearly unstable.
This result is known for water waves as Benjamin-Feir instability [49], and as
modulational instability in optics [50] (see also [51]). It is common and convenient
to characterize these wave phenomena by plotting the imaginary part of the wave
frequency versus the wave number. To this purpose we consider again the Fourier-
like mode (see above) . .0/22 /

2 D e2it expŒi.kx � !t/� with

k D �2w D �2
p
	2 C 1 ; !.k/ D �k

p
k2 � 4 : (56)

Fig. 2 Focusing NLS: Sx D x-part spectrum/St D t-part spectrum of u.0/ D exp.2it/; the crosses
indicate examples of solutions in the one parameter family (48)
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Fig. 3 NLS instability of u.0/ D exp.2it/: imaginary part of frequency !.k/ versus wave number
k, see (56)

The resulting instability plot is shown in Fig. 3.
The linear stability analysis can tell that a solution is unstable by showing an

exponential (or, in marginal cases, polynomial, see below) growth of that solution as
time goes by. However, it is not able to tell the long time evolution. Depending on the
perturbing deviation ıu.x; t/, it may well happen that the growing perturbation even-
tually develop into a finite, likely soliton, solution of the NLS equation. Candidates
to playing such role are indeed solutions with a simple spectral characterization such
as those corresponding to discrete eigenvalues. One example of this type of solutions
of the focusing NLS equation can be computed by means of one of the tool provided
by its integrability, namely by the Darboux transformation. This construction has
been done in the previous section, the outcome being the family of solutions (48).
This is a one-parameter family, the parameter � being real if the corresponding pair
of discrete eigenvalues, 	1 D i cosh.�/, 	2 D 	�

1 D �i cosh.�/ lie off the spectrum
Sx, while � has to be imaginary, i.e. � D i� ; 0 � � � �=2, if on the contrary the
discrete eigenvalues 	1 D i cos.�/; 	2 D 	�

1 D �i cos.�/, are required to be in the
spectrum Sx, see Fig. 2. The corresponding solutions of the NLS equation, uKM.x; t/
if � is real, and uA.x; t/ if instead � is imaginary, have been separately found in
[52, 53] and, respectively, in [54]. Here the subscript KM indicates the Kuznetsov-
Ma solution uKM [52, 53] while the subscript A indicates the Akhmediev solution
uA [54]. The x and t dependence of these two different types of solutions may be
understood by looking at the position of their corresponding eigenvalues in the 	-
plane. Indeed, uKM.x; t/ is localized in x and periodic in t since its corresponding
eigenvalues are in St and off Sx while the opposite occurs for uA.x; t/which is instead
periodic in x. In order to show that indeed this last solution uA.x; t/ describes the fate
of a small perturbation of the unstable continuum wave u.0/ D exp.2it/, we first give
this solution the more convenient expression

u D e2i.t��/Œ1Ci sin.�/
ei.�Ciqt/ � e�i.�Ciqt/

cosh.qt/ � cos.�/ cos.px/
� ; p D 2 sin.�/ ; q D 2 sin.2�/

(57)

and then we note that its asymptotic behavior

u.x; t/ D e2itŒ1C ıu.x; t/C O.e2qt/� ; (58)
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as t ! �1, is that of the background continuum wave perturbed by the small
exponential tail

ıu.x; t/ D i sin.2�/e�i�e2it cos.px/eqt ; (59)

which satisfies the linearized equation (49).
Let us finally consider the marginal case of the solution family (48) which

corresponds to the parameter value � D 0, or equivalently, to the border value
	 D ˙i of the corresponding eigenvalue, see Fig. 2. By performing this limit, the
final expression has no more exponential functions in it since it features only a
rational dependence on the variables x, t, which reads

uP.x; t/ D e2it
�
1 � 4.1C 4it/

1C 4x2 C 16t2

�
: (60)

In this solution the subscript P stands for Peregrine and this is indeed the well known
Peregrine soliton [55]; it gained relevance as model of water rogue waves [56–61],
and later in other physical contexts [62–66]. Its peculiarity is that of appearing and
disappearing over an unstable background while its amplitude reaches a maximum
value which is three times that of the surrounding periodic wave. The suggestion
that rogue waves, as they appear in nature, may be described by rational solutions
has given a strong impulse in this direction, particularly to the mathematical side
of this subject. Various extensions [45, 67–78] of the Peregrine soliton to other
integrable wave models have soon been available and investigated, and still are to a
considerable extent. Some of these developments are discussed in the next section.

4 Wave Coupling: Integrability and Rogue Waves

The dynamics of waves frequently requires that more than just one field prop-
agates. For instance dealing with polarized light beams in a nonlinear (Kerr)
medium naturally leads to consider both self interaction, as in the NLS equation,
and cross interaction among the two different polarization fields. As a different
mechanism causing similar wave-wave coupling, one may consider two different
quasi-monochromatic waves with wave-numbers k1, k2 propagating in the same
medium with cubic nonlinearity. Then a multiscale analysis shows that, if the weak
resonance condition vg.k1/ D vg.k2/ is satisfied, vg.k/ being the group velocity, the
two waves interact with each other. In both these examples the resulting system of
equations reads



iu1t C �1u1xx C .g1ju1j2 C g12ju2j2/u1 D 0

iu2t C �2u2xx C .g2ju2j2 C g21ju1j2/u2 D 0
(61)
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where the constant coefficients � ’s and g’s depend on the particular physical process.
Integrable methods apply also to this system of equations provided the coefficients
satisfy the conditions �1 D �2, g1 D g21, g2 D g12. Indeed, if these relations do
not hold true, the system (61) is not integrable, and no Lax pair is associated to it.
Thus there exist only three different integrable cases which, by appropriate cosmetic
rescaling, see Sect. 2, take the form



iu1t C u1xx � 2.s1ju1j2 C s2ju2j2/u1 D 0

iu2t C u2xx � 2.s1ju1j2 C s2ju2j2/u2 D 0
; s21 D s22 D 1 : (62)

Depending on the two signs s1, s2, we have the focusing case (Manakov model
[79]), s1 D s2 D �1, the defocusing case s1 D s2 D 1 and the mixed case
s1 D �s2 D 1 which models self-defocusing for the wave amplitude u1 and
self-focusing for u2. All of these cases have applications in fluid dynamics [80–
82], optics [83–87] and Bose-Einstein condensates [88]. The system (62) clearly
generalizes the NLS equation (18) and it is known as Vector Nonlinear Schrödinger
(VNLS) equation since the two-component vector .u1 ; u2/ can be easily generalized
to a N-component vector for any N, see (9). As expected, it shares with the NLS
equation several properties but it also differs under various aspects. Its Lax pair
formally looks like (20) but now the matrices X and T are 3 � 3 with

X D i	˙ C Q.x; t/ ; ˙ D
0
@1 0 0

0 �1 0

0 0 �1

1
A ; Q D

0
@ 0 s1u�

1 s2u�
2

u1 0 0

u2 0 0

1
A ; (63)

and

T D 2i	2˙ C 2	Q C i˙.Q2 � Qx/: (64)

Starting from these expressions, and similarly to what has been done for the NLS
equation, one can find an infinite number of local conservation laws of the form (29)
[89], and can construct soliton solutions by means of the Darboux transformation
(e.g. [43, 44]). Also the inverse spectral method can be extended to solve the initial
value problem when the boundary values, as x ! ˙1, vanish, say u1.x; t/ and
u2.x; t/ ! 0 (see e.g. [79]), and also when u1.x; t/ and u2.x; t/ go, in the same limit
of x, to a continuous wave solution (see e.g. [90]).

Here our discussion focuses on the construction of bounded rational solutions
of (62) whose interest is well motivated by their application as rogue wave
models. In analogy with the NLS equation, and according to a general common
understanding of this phenomenon, the existence of rogue waves requires that
they are superimposed to an unstable continuous background. However we do not
address here the problem of determining the stability of the background solution,
as done in the previous section for the NLS equation. We rather limit ourselves to
point out that, quite differently from the NLS equation, instability occurs not only
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in the focusing regime s1 D s2 D �1, but also in the defocusing and mixed cases
(e.g. [45, 91, 92]). In the previous section we obtained the rational (alias Peregrine)
solution (60) by taking the limit � ! 0 of the �-dependent family (48). The analytic
construction of rational solutions of multicomponent wave equations, as the VNLS
system (62), by taking such limit is no longer convenient, if at all doable. In the
following we show a direct way to solve this problem with no need to take this limit
operation. We begin by observing that the solution (48) of the NLS equation is made
out of exponential functions which come in, through the Darboux formula (45), from
the exponential solution (52) of the Lax pair (with s D �1). Thus, to our purpose,
the main task is to change the exponential matrix function expŒi.xW � tF/�, see (52),
into a polynomial function. This is not possible if the matrix W.	/ (and therefore
F.	/) is diagonalizable. It is instead possible if, for a special value of the spectral
variable 	, the matrices W, F are not diagonalizable. If such value of 	 exists, it
is called critical and denoted 	c. The expressions (53) and (54) clearly show that
only if the eigenvalues coincide with each other, say if w.	/ D p

	2 C 1 D 0,
the matrices W, F are not diagonalizable. Indeed, in this case there are two critical
values 	c D ˙i, and in fact, f. i. for 	c D i, the matrix W takes the value

W.i/ D i

�
1 1

�1 �1
�
; (65)

which is nilpotent, namely W.i/2 D 0. This property similarly holds for F.i/ and for
W.�i/ and F.�i/. The implication is that the exponential exp Œi.xW.	c/� tF.	c//�
is in fact the polynomial 1 C iŒxW.	c/� tF.	c/�, as implied by the Taylor expansion
of the exponential function. It is now a simple exercise to obtain again the Peregrine
solution (60) by this method.

The extension of this technique to the VNLS equation first requires the compu-
tation of the critical values 	c. This can be done in a systematic way so as to find all
such critical values which eventually lead to the construction of bounded rational
solutions. The starting point is the expression

 
u.0/1 .x; t/

u.0/2 .x; t/

!
D
�
a1ei.qx��t/
a2e�i.qxC�t/

�
; � D q2 C 2.s1a

2
1 C s2a

2
2/ (66)

of the continuous wave solution of the VNLS equation (62) and of the corresponding
matrix solution

�.0/.x; t; 	/ D
0
@1 0 0

0 ei.qx��t/ 0

0 0 e�i.qxC�t/

1
A ei.xW.	/�tF.	// (67)

of the Lax pair (20). The 3 � 3 constant matrices W, F depend only on 	 and
on the background solution parameters a1, a2, q. In this respect we note that the
parameter q has no counterpart in the single wave NLS equation (18). Indeed it
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represents the wave number mismatch of the two background components u.0/1 and

u.0/2 as 2q equals the difference of these wave numbers. Its novel important feature
is to have a crucial effect on the stability of the solution (66). Again the Darboux
transformation method, as applied to the seed solution (66), is the convenient tool to
obtain the explicit expression of new solutions of the VNLS equation (see Sect. 2).
As we are interested here in obtaining rational solution, our main concern is to
find the critical values of 	, namely those values for which the matrix exponential
ei.xW.	/�tF.	// yields a polynomial dependence on x, t. In analogy with what we have
shown above for the NLS equation, the main task is finding the eigenvalues of the
matrices W.	/ and F.	/ together with their 	-dependence. Equivalently, and by
dealing for instance with W, which is

W.	/ D
0
@ 	 �is1a1 �is2a2

�ia1 �	 � q 0

�ia2 0 �	C q

1
A ; (68)

one has to investigate the 	-dependence of the three roots w1.	/, w2.	/, w3.	/ of
the characteristic polynomial P.w/ DdetŒw1 � W.	/� in the entire 	-plane. This
task requires numerical computations in order to find in addition the dependence
of the critical values 	c on the continuous wave parameters q, a1, a2. We refer the
reader to [45] for the way of classifying all critical values 	c in the parameter space
and we limit ourselves to make few comments and to show few plots. Because of
the complicate Cardano expression for the roots of a third degree polynomial, only
the solutions with q D 0 can be found in simple explicit form. This particular case
(q D 0) yields the expression of the vector analog of the NLS Peregrine solution,
and, as expected, this solution exists only in the focusing case s1 D s2 D �1. In

fact this solution corresponds to two critical values, 	c D ˙i
q
a21 C a22. However

its expression, which reads

�
u1
u2

�
D e2ip

2t

"
.P2 C jhj2e2px/
.M2 C jhj2e2px/

�
a1
a2

�
C hP1e.pxCip2t/

.M2 C jhj2e2px/
�

a2
�a1

�#
(69)

has the novel feature of showing a mixture of exponential and polynomial depen-
dence on x; t since P2, M2 are polynomials of degree 2, while P1 is a polynomial

of first degree. Here p D
q
a21 C a22 while h is an additional arbitrary complex

parameter. Thus, if say a2 D 0, this solution describes a dark soliton in the first
component and a bright one in the second component which at the time of their
interaction generate a Peregrine-type bump, see Fig. 4. Only if h D 0 this solution
features a Peregrine rogue wave in both components.

If the mismatch parameter q is different from zero, rogue wave type solutions
exist in all regimes but not for all values of the parameters a1, a2, q. To the purpose of
classifying all these solutions, it is convenient to separately consider the multiplicity
of the three eigenvalues of the matrix W.	/ (68). It is plain that no critical values 	c
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Fig. 4 s1 D s2 D �1; q D 0; a1 D 1; a2 D 0; 	c D i; f D 0:1

Fig. 5 s1 D s2 D �1; q D 1; a1 D a2 D 2; 	c D i
p
27

2

exist if all the eigenvalues are simple since in this case W and F are diagonalizable
and the exponential expŒi.xW.	/ � tF.	//� cannot be a polynomial. In the case in
which there is just one eigenvalue with multiplicity 3, only two critical values of 	,

	c D ˙i
p
27
2

, exist and only in the focusing case s1 D s2 D �1 with the restriction
to the subset a1 D a2 D 2q. Figure 5 shows such a rogue wave.

If instead the matrix W.	/ has an eigenvalue with multiplicity 2 there may
exist several critical values 	c. In this respect it is convenient to consider first the
parameter subset s1 D s2, a1 D a2, q ¤ 0 because in this particular case the
critical value 	c can be explicitly computed. It turns out that in the focusing case
s1 D s2 D �1 four critical values exist for any value of q and a1 D a2, for one such
solution see Fig. 6.

In the defocusing case s1 D s2 D 1 threshold phenomena appear as no critical
value 	c (alias no rogue wave) exists if q2 � 2a21 while (only) two critical values
exist if q2 < 2a21, see Fig. 7.

In order to explore the generic case a1 ¤ a2 and q ¤ 0 one may conveniently
proceed by numerically computing the critical value 	c, see the examples of rogue
wave solutions shown in Figs. 8, 9, and 10, in, respectively, focusing, defocusing
and mixed cases. Still it is explicitly found that the existence of rogue waves in the
defocusing regime is conditioned by the inequality .a21 C a22/

3 � 12.a41 � 7a21a
2
2 C
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Fig. 6 s1 D s2 D �1; q D 1; a1 D a2 D 1; 	c D
q

3
8

q
�3C i

p
3

Fig. 7 s1 D s2 D 1; q D 1; a1 D a2 D 2; 	c D i
2

q
�13C 16

p
2

Fig. 8 s1 D s2 D �1; q D 1; a1 D 2; a2 D 5; 	c D 4:876C 5:343i

a42/q
2 C 48.a21 C a22/q

4 � 64q6 > 0 for the amplitudes a1; a2 and the mismatch
parameter q.

A detailed discussion of the existence of rogue waves as related to base-band
modulational instability of the continuous wave background in the defocusing
regime is reported in [93, 94], (see also [92]).
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Fig. 9 s1 D s2 D 1; q D 1; a1 D 2; a2 D 5; 	c D �5:600C 4:655i

Fig. 10 s1 D �1; s2 D 1; q D 1; a1 D 1; a2 D 2; 	c D �1:242C 0:636i

5 Integrability in Action: Beyond the NLS Model

Integrable nonlinear equations modeling wave phenomena, even if approximate,
as they generally are, yet play an important role in understanding and predicting
experimental observations. Thanks to the mathematical property of being integrable,
a number of powerful computational technique are available to investigate patterns
as those due to shock waves, and even to analytically construct special interesting
solutions such as multi-soliton and multi-rogue waves. To the purpose of illustrating
how some of these methods work, in the previous sections we have considered the
ubiquitous NLS equation as prototype integrable model, together with its extension
to a system of two coupled NLS equations. All problems raised have been solved
by starting from the Lax pair. Indeed, because of their dependence on the spectral
variable, these two equations contain all the valuable information. Since the Lax pair
plays such an essential role, it should be pointed out that finding which integrable
partial differential equation is associated to a given Lax pair (as its compatibility
condition) is rather easy. However the other way around is far from being a simple
task, as no general method exists to prove, or disprove, the existence of a Lax
pair associated with a given nonlinear partial differential equation. Attempts in this
direction make use of a weaker definition of integrability, which can be tested by
multi-scale expansion [21], or by recursively constructing symmetries [95, 96] of
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the given nonlinear wave equation. Attempts to solve this problem by classifying
Lax pairs also exist (see [97] and references therein).

Searching for new integrable wave equations naturally leads to change the
matrices X.	/ and T.	/ of the Lax pair (20). This has been done in many ways,
according to various purposes, during the last 45 years, and it is still common
practice. In this respect we believe that the following examples may well give a
good perspective of applications of integrability not only in the general context of
nonlinear science but also in the more specific one of modeling wave phenomena.
Let us consider first the two main features of the Lax pair of Eqs. (20), namely
(1) the 	-dependence of the matrices X.	/ and T.	/, and (2) their dimension. In
fact searching for the Lax pair associated with the KdV and the cmKdV equations,
(1) and (3), requires that the matrix T.	/ be a third degree polynomial of 	 (e.g.
[6]), while the matrix dimension is 2 � 2 as for the NLS equation. Keeping this
same matrix dimension but asking that the 	-dependence be rational rather than
polynomial is required to obtain the SG equation (4) [98–100] and the MTM
equation (8) [101, 102]. Increasing the matrix dimension is standard strategy to
extend one scalar wave equation to a system of equations to model wave-wave
interactions. This is the case for instance of the VNLS (62) which requires matrices
of dimension 3 � 3. This same dimension is required to arrive at the system (10)
which models the resonant interaction of three waves [103] (see also [104] and
references therein), the 	-dependence of both X.	/ and T.	/ being polynomial of
first degree. This system can be generalized to the so-called N-wave interaction
equations (e.g. [105, 106] and references therein) which again model resonant
interaction of N wave fields with quadratic nonlinearity. In this case the matrix
dimension has to be n � n with N D n.n � 1/=2. Also the Lax pair matrices
associated with the LWSW equation (6), which models the resonant interaction of
long waves with short waves [107, 108], are 3 � 3 [107, 109, 110]. A further, and
more substantial, way of changing the Lax pair is asking that this pair of equations
be partial, rather than ordinary, differential equations by introducing more space
variables. Examples of integrable equations in 2-space and 1-time dimensions are
the Kadomtsev-Petviashvili [111] and Davey-Stewartson [112] equations which find
their application in fluid dynamics. Other nonlinear wave equations can be added
to those we have mentioned here which are integrable and also valuable in some
applicative context.

As part of our discussion has been devoted to those solutions which model rogue
waves, we conclude with the following collection of integrable equations which
share the property of having rogue wave solutions. We observe that in fact not all
integrable wave equations possess such type of solutions. In addition to the focusing
NLS equation (5) with s D �1 [55, 113] and VNLS equation (62) [45, 68, 93],
whose rogue wave solutions have been discussed above, rogue wave solutions have
been identified also for the cmKdV equation (3) [114], the DNLS equation (7) [115],
the MTM (8) [116], the LWSW (6) [73, 117] and the 3WRI equation (10) [45,
71, 78]. Also the following integrable equations, among others, have been recently
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reported to possess rogue wave solutions

• Hirota-Maxwell-Bloch (H-MB) equation [118]:

iut C aŒuxx C 2juj2u�C ibŒuxxx C 6juj2ux� D 2p
px D 2i!p C 2�u
�x D �.up� C u�p/

(70)

where a; b are arbitrary real constants.
• Sasa-Satsuma (SS) equation [119–121]:

iut C uxx C 2juj2u C i˛Œuxxx C 3.juj2/xu C 6juj2ux� D 0 (71)

the real constant coefficient ˛ being arbitrary.
• Kadomtsev-Petviashvili I (KP-I) equation [122, 123]:

.ut � uxxx � 6uux/x C uyy D 0 (72)

• Davey-Stewartson II (DS-II) equation [124]:

iut C uxx � uyy C 2sjuj2u D 2�u ; �xx C �yy D 2s.juj2/xx ; s D ˙1
(73)
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Hydrodynamic Envelope Solitons and Breathers

Amin Chabchoub, Miguel Onorato, and Nail Akhmediev

Abstract The nonlinear Schrödinger equation (NLSE) is one of the key equations
in physics. It describes the evolution in time and space of wave packets and it
applies to several nonlinear dispersive media, such as Bose-Einstein condensates,
plasma, optics and hydrodynamics. An important feature of the NLSE is its
integrability. Exact solutions and their experimental observations, ranging from
solitons to breathers in various physical media, confirmed the validity of the NLSE
in accurately describing the wave motion. The accuracy is surprisingly high even
for the cases of severe wave focusing in a wide range of nonlinear dispersive
media. In this Chapter, we will briefly discuss the physical relevance of exact NLSE
solutions as well as review past and recent progress of experimental studies of
dark and bright NLSE solutions in hydrodynamics. Validity and limitations of such
weakly nonlinear models will be discussed in detail. Related promising engineering
applications will be also emphasized.

1 Introduction

Localized waves on the water surface and extreme oceanic events in particular
require accurate modeling for the sake of their physical understanding, prediction
and prevention. The so-called rogue (or freak) waves have been frequently observed
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in coastal areas as well as in offshore regions [1–3]. Recently, physical mechanisms
explaining the formation of rogue waves have attracted attention of several scientific
communities [4–13]. Taking into account the nonlinear nature of water waves
[3, 14], one of the physical mechanisms, considered to be responsible for the
formation of hydrodynamic extremes, is the modulation instability (MI) [15, 16]. It
has been discovered in the 1960s [17–20] and has been observed in several nonlinear
media [21–23]. The MI, also referred to as the Benjamin-Feir (or Bespalov-Talanov)
instability, describes the disintegration of weakly nonlinear regular wave train, ini-
tially slightly modulated in its amplitude. In the spectral domain, the MI originates
from the presence of unstable side-bands on each side of the main frequency. These
primary side-bands grow in amplitude generating the infinite number of additional
side-bands due to the four wave mixing effect, thus, broadening the spectrum from
a single frequency to a triangular comb-structure [24, 25]. The widening of the
spectrum, in turn, leads to the strong periodic focusing of the wave field.

A crucial step in finding appropriate models to describe stationary and unstable
hydrodynamic localized structures in finite and infinite water depth has been taken
with the discovery of the nonlinear Schrödinger equation (NLSE) [20, 26] and
particularly in the development of complex mathematical tools, such as the inverse
scattering Transform [27], the Darboux transform method [28] and various direct
routines [29–34] for solving this evolution equation. Several families of fundamental
solutions have been derived and reported [35, 36]. As a result, physical understand-
ing of nonlinear waves within the framework of integrable systems has significantly
improved. Laboratory experiments and numerical studies played a major role in
establishing the validity of integrable evolution equations, including the NLSE [37–
41]. They also demonstrated the analogy between wave propagation in different
nonlinear dispersive media, in particular, in optics and on the water surface [42, 43].

Here, we shortly review the works related to the hydrodynamic NLSE by
choosing the most relevant experimental studies, related to envelope solitons and
breathers in the cases of finite and infinite water depth in a sort of crash course.
It is shown that the basic properties of the NLSE, and predictions of water surface
motion based on it, agree with experiments and are reasonably accurate, even in the
case of strong focusing of water waves, provided that the carrier frequency and the
corresponding solution parameters are appropriately chosen. We also notice that the
localized structures on the surface of shallow-water [44, 45] can be described using
the NLSE solutions [46, 47] although they are not discussed here.

The chapter is organized as follows. In Sect. 2 we briefly recall the equations
governing the surface gravity waves and discuss the weakly nonlinear Stokes
approach. Section 3 is a review of the most relevant exact solutions of the defocusing
and focusing NLSE, ranging from stationary solitons to breathers. In Sect. 4 we
describe the experimental setup and the initial conditions applicable to the wave
maker when generating these localized solutions in a wave flume. Sections 5 and 6
report experimental observations of hydrodynamic stationary and breather solutions.
Finally, the main results are summarized in Sect. 7 and the limitations of weakly
nonlinear models as well as potential applications of the NLSE approach in ocean
engineering are discussed.
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2 Weakly Nonlinear Water Waves Theory

In this Section we present the governing equations of an ideal fluid, consider the
phenomenon of MI of Stokes waves and survey its properties within the framework
of the NLSE.

2.1 Stokes Waves and Modulation Instability

A two-dimensional inviscid, incompressible and irrotational fluid of depth h with
free surface is governed by the Laplace of motion and three boundary conditions
[2, 48]

r2� D �xx C �zz D 0 for � h � z � 0; x 2 R and t 2 R
C; (1)

�t C �x�x � �z D 0 on z D � .x; t/ ; (2)

�t C 1

2
.r�/2 C g� D 0 on z D � .x; t/ ; (3)

�z D 0 on z D �h; (4)

where � .x; z; t/ is the velocity potential, r2 denotes the Laplace operator, � .x; t/
is the free surface elevation and g is the gravitational acceleration. The waves are
propagating in one dimension along the x-axis, the coordinate z is positive upwards
and the external pressure exerted on the surface of the fluid is assumed to be zero. It
is easy to show that a purely sinusoidal water surface elevation is a solution of the
linearized water wave problem with the corresponding linear dispersion relation

! D
p
gk tanh .kh/: (5)

Stokes has shown in his pioneering work [14] that periodic solutions of the weakly
nonlinear problem can be obtained using the perturbation theory with the small
steepness parameter ", defined as a product of the wave amplitude a and the
wavenumber k. For deep-water (kh ! 1), up to second-order approximation, the
surface elevation and the dispersion relation can be written in the forms

� .x; t/ D a cos .kx � !t/C 1

2
ka2 cos Œ2 .kx � !t/� ; (6)

! D p
gk

 
1C a2k2

2

!
: (7)

Benjamin and Feir showed that this weakly nonlinear solution (6) is additionally
unstable to perturbations with longer periods [19]. Namely, the modulation of
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a regular Stokes wave train may experience an exponential growth when the
modulation frequency˝ lies in the following range

0 < ˝ <
p
2!ka: (8)

Thus, for a given steepness " D ak of the wave train, there is a modulation
frequency range ˝ in which second-order Stokes waves become unstable [49, 50].
We elucidate in the next subsection how this instability can be explained within the
context of the NLSE.

2.2 The Nonlinear Schrödinger Equation (NLSE)

A general form of the NLSE has been derived for nonlinear dispersive media in
[26, 51]. For deep-water waves, it has been first derived by Zakharov [20] and has
the following form:

i

�
@�

@t
C cg

@�

@x

�
� !

8k2
@2�

@x2
� !k2

2
j� j2 � D 0: (9)

k corresponds to the carrier wavenumber, ! D p
gk is the angular frequency and

cg D !=.2k/ denotes the group velocity of the wave packet. Yuen and Lake derived
the same Eq. (9) using Whitham’s theory [37]. A more general form of evolution
equation for arbitrary water depth h can be rigorously derived using the method of
multiple scales [48, 52]:

i

�
@�

@t
C cg

@�

@x

�
� ˛@

2�

@x2
� ˇ j� j2 � D 0; (10)

where the coefficients ˛ and ˇ are

˛ D � 1

2

@2!

@k2
;

ˇ D!k2
�
cosh .4kh/C 8 � 2 tanh2 .kh/

	
16 sinh4 .kh/

� !
�
2! cosh2 .kh/C kcg

	2
2 sinh2.2kh/

�
gh � c2g

	 :

The group velocity here is cg D @!

@k
with ! and k related through the linear

dispersion for finite water depth in Eq. (5). Depending on the signs of ˛ and ˇ,
Eq. (10) is either a focusing or defocusing form of the NLSE. Then, it can be shown
that whether the MI develops or not depends on the sign of the product ˛ˇ. From
the above expressions for ˛ and ˇ we can see that ˛ˇ > 0 when kh > 1:363. In this
case, the NLSE is self-focussing and the wave train modulations may experience
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an exponential growth. On the other hand, when kh < 1:363, the NLSE is self-
defocusing and all wave trains are stable.

First, we focus on the deep-water case kh > 1:363 when the NLSE admits the
MI. The plane wave solution of Eq. (9) in infinite water depth is

� .x; t/ D a exp

�
� i

a2k2

2
!t

�
: (11)

Periodic modulations of this solution along x with modulation wavenumber K lead
to the time response with the modulation frequency ˝ [3, 37] which can be found
from linearization of the perturbation

˝2 D !2

8k2

�
K2

8k2
� k2a2

�
K2: (12)

A wave train is unstable if ˝ is imaginary. This happens when K lies in the range

0 < K < 2
p
2k2a: (13)

This condition is equivalent to Eq. (8) taking into account that cg D ˝

K
D !

2k
. The

above linearized approach is the limiting case of the complete exact solution of the
NLSE [24]. In the latter case, the modulation wavenumber K becomes a free param-
eter of a family of NLSE solutions. This family is presented in the next section.

3 Exact NLSE Solutions and Their Physical Interpretation

As the NLSE is an integrable equation, the initial value problem can be solved
analytically for wide variety of initial conditions [27]. Another useful approach is
finding initial conditions that generate known exact solutions of the NLSE. The
existence of families of exact solutions of the NLSE with variable parameters
[35, 53] provides certain flexibility in finding initial conditions and experimental
observation of these solutions. For simplicity, below, we consider the scaled form of
the NLSE

i T C  XX ˙ 2 j j2  D 0; (14)

where dependent and independent variables are rescaled in order to simplify the
coefficients in the equation. The sign of the cubic nonlinear term in (14) depends
on sign of the product ˛ˇ or, in other words, on the depth of the water. Specifically,
the sign is negative (defocusing case) when kh < 1:363 and positive (focusing case)
when kh > 1:363.
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Equation (14) admits a scaling transformation [36], i.e., if  .x; t/ is a solution
of (14), then so is a .aX; a2T/, where a is an arbitrary real parameter. This
transformation allows us to add one more free parameter into the family of known
solutions. In the defocusing case, the NLSE admits a family of dark soliton
solutions, that can be written in the form [27]

 D .X;T/ D �
sin .#/C i cos .#/ tanhfcos .#/ .X C 2 sin .#/ T/g� exp .�2 iT/ :

Here, the real parameter # controls the depth of the soliton relative to the
background. Namely, the minimum soliton amplitude can be expressed in terms
of # : min j D .X;T/ j D j sin#j while the correction of the soliton group velocity
cg is sin# . The upper panel in Fig. 1 shows an example of a gray soliton in the
.X;T/-plane when # D �=6 while the lower panel shows three examples of the
soliton shape in X when # changes. The minimal (zero) amplitude of the soliton is
reached when # D 0. This is the case of the black soliton [54]. It can be written in
a simple form

 B .X;T/ D tanh .X/ exp .�2 iT/ : (15)

The localized solution of the focusing NLSE is the bright soliton with zero
velocity [27]

 S .X;T/ D sech .X/ exp .i T/ : (16)

Fig. 1 Top: Evolution of a modulus of gray soliton in the .X; T/-plane for a D 1 and # D �=6.
Bottom: Dark soliton envelopes for # 2 f�=3; �=6; 0g and a nondimensional amplitude a D 1 at
T D 0



Hydrodynamic Envelope Solitons and Breathers 61

A velocity can be added to this solution using Galilean transformation [36]. Multi-
soliton solutions can be constructed analytically using the Darboux transform
technique [55]. Here, we restrict our attention to the case when individual solitons
have zero velocities and located at the same position X D 0. However, their eigen-
values of inverse scattering technique differ. Namely, the eigenvalues are imaginary
and they are given by fi =2; 3 i =2; 5 i =2; : : :g. These solutions have been first
presented by Satsuma and Yajima in 1974 [56]. Examples are shown in Fig. 2.
The number of fundamental solitons in these superpositions progressively increases
(N D 1; 2 and 3, respectively). The individual solitons in these superpositions have
alternating phases [55]. The advantage of this arrangement is the simple profile of
the composite solution at zero T which is given by  .T D 0;X/ D N sech(X).
This specific form is the reason for calling these solutions “higher-order” solitons
[57]. Instead, we name these solutions “Satsuma-Yajima solitons”. Indeed, Satsuma
and Yajima found these solutions investigating the initial conditions in the form
N sech.X/. If the soliton phases are not alternating, this feature of the solutions is
lost. Instead, the amplitude of the superposition may take much higher values (up to
N2 as shown by Akhmediev and Mitskevich [55]).

Higher-order solitons are periodic breathers along the T-axis due to the difference
of propagation constants of individual soliton components. For strict periodicity, all
propagation constants when N > 2 must be commensurate. This happens for the
above specific choice of the eigenvalues. The maximum compression of the higher-
order solitons happens in the middle of each period. In the optimized case, the

Fig. 2 Top: Evolution of a sech.X/ envelope soliton  S in normalized time and space for aD
1. Middle: Evolution of a second-order Satsuma-Yajima solution  SY2 with the initial condition
2 sech.X/ in normalized time and space for aD 1. Bottom: Evolution of a third-order Satsuma-
Yajima solution  SY3 with the initial condition 3 sech.X/ in normalized time and space for aD 1
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maximum compression with the amplitude N2 takes place at T D 0 [55]. The wave
amplitude of up to N2 can be considered as an extreme event. However, the periodic
appearance of such events prevents us in classifying them as rogue waves. The latter
suppose to be unexpected and occur only once. Then we should turn our attention
to other solutions of the NLSE as prototypes of rogue waves although chaotic
generation of solitons may serve as a source of rogue waves in supercontinuum
generation in optical fibres [4, 58].

For the ocean, it is natural to describe rogue waves using localized solutions
on a background as the ocean surface is normally covered with waves of various
frequencies. As we are dealing with the envelope equation, these waves serve as the
finite amplitude background. The background contains infinite amount of energy
due to the vast areas of the ocean and instabilities may focus this energy into a
spot. A solution in the form of a soliton on a finite background has been found
in [59]. This solution is periodic due to the beating between the soliton and the
background. Thus, the feature of unexpectedness in this case is missing although
the amplification above the background can reach the values higher than three.
More detailed investigation of these type of solutions has been provided by Ma
in 1979 [60]. They are presently known as Kuznetsov-Ma (KM) solitons [61–63].
Such solution does not correspond to the MI.

In contrast, MI starts from an infinitesimal perturbation that grows exponentially
at the initial stages of the process. For later times, the exponential growth is
an artefact of the linear stability analysis and has to be reconsidered for larger
amplitudes. Consequently, MI has been later extended to a full exact solution of
the NLSE [24, 53]. These are now known as Akhmediev breathers (ABs) [64–67].
These solutions reveal the initially exponential amplitude growth of the maxima up
to a highest amplitude with the subsequent decay of the field back to the background
level. This growth-decay cycle of the solution occurs only once and depending on
the initial conditions may have the effect of unexpectedness.

The power of complex analysis allows the solutions of the NLSE to be written
as families of solutions with several parameters with particular cases assigned to a
specific values of these parameters. An example is a rather general three-parameter
family of NLSE solutions that includes most of the basic solutions: solitons, various
single- and double-periodic solutions, rational solutions and plane waves [35]. As a
particular case of this family, the KM and AB solutions can be represented as a one-
parameter family of solutions where a single parameter a controls the modulation
period of these solutions and allows mutual transition between breathers and solitons
[61, 68]. This combined family can be written in the form:

 A=KM .X;T/ D
�
1C 2 .1 � 2a/ cosh .2RT/C iR sinh .2RT/p

2a cos .˝X/� cosh .2RT/

�
exp .2iT/ ; (17)

with R D p
8a.1� 2a/ and ˝ D 2

p
1 � 2a. When the parameter 0 < a < 0:5,

Eq. (17) describes the family of ABs. The case of maximal growth rate corresponds
to a D 0:25. When a > 0:5 it represents the KM solitons. This parametrisation
is not unique. A different way of representing these solutions can be found in [69].
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Fig. 3 Left: An example of a space-periodic Akhmediev breather for a D 0:29 and a D 1. Right:
An example of a time-periodic Kuznetsov-Ma soliton for a D 0:55 and a D 1. Evolution variable
in each case is T. Source: From [62]

One example of each of these solutions is shown in Fig. 3. Although mathematically
these two solutions can be written as a single equation, they describe different
physical phenomena. The AB solution is breathing only once along the T-axis while
the KM soliton is evolving periodically along the evolution variable T. The beating
period in the KM soliton case is related to the difference in wavenumbers of a soliton
and the background wave. When the background wave is zero, the KM soliton is
transformed into an ordinary constant amplitude soliton. On the other hand, the
spatial period of the AB solution is explicitly given in the initial conditions.

The case of infinite period of each of these two solutions is undefined. This limit
is reached when the parameter a ! 0:5. The solution can be found eliminating
uncertainty with a L’Hopital’s rule. Most of the maxima in the solution move to
infinity and only one of them remains at the origin. Then, the solution is described
by a rational expression which is known as the Peregrine solution

 1 .X;T/ D
�

�1C 4C 16 iT

1C 4X2 C 16T2

�
exp .2 iT/ : (18)

It was first found by Peregrine in 1983 [70]. In contrast to the ABs, the growth
rate of this solution is algebraic rather than exponential. Furthermore, due to its
localization both in time and in space and because its amplitude reaches three times
the background this solution has been suggested to model oceanic rogue waves [71].
Indeed, such wave “appears from nowhere and disappears without a trace” [72] just
like oceanic rogue waves do. The Peregrine solution is not the only one, which has
these exceptional features. In fact, it is the lowest-order solution of a whole family
of doubly-localized Akhmediev-Peregrine breathers (APs) [73]. Their general form
is given by Akhmediev et al. [74]

 j .X;T/ D
�
.�1/j C Gj C iHj

Dj

�
exp .2 i T/ : (19)

where the expressions for polynomials Gj, Hj and Dj are complex and are not given
here. We refer to [53, 72, 74–77] for their explicit forms. Figure 4 shows profiles of
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Fig. 4 Peregrine and higher-order AP solutions on .X; T/-plane for a D 1. Top left: Normalized
Peregrine soliton. Top right: Second-order AP solution. Bottom left: Third-order AP solution.
Bottom right: Fourth-order AP solution. Source: From [107]

four lowest-order AP solutions centered at the origin. As can be seen from Fig. 4,
the increase of the order of the solution j boosts the amplitude of the rogue wave.
It can be shown [74] that the amplitude amplification of the j-th order solution over
the background is 2j C 1. There are a number of recent papers reporting higher-
order AP solutions with maximal amplitude compression of up to 23 times the
amplitude of the background [78–80]. However, as discussed in Sect. 6, it is very
hard to reproduce them experimentally in wave tanks because, unless the initial
condition is very small, wave breaking occurs. Generally, higher-order solutions
exist in various forms. In the limiting case, they can split into fundamental building
blocks, i.e. j. jC1/

2
separate Peregrine solutions. We refer to [81–83] for particular

forms of these solutions and for their general classification.

4 Experimental Setup

The methodology applied to observe wave packets and particularly exact solutions
of the NLSE in a wave tank of water with depth h is straightforward. The carrier and
envelope parameters and the boundary conditions, applied to the wave maker, have
to be determined from the theory. The background is defined by two parameters:
the amplitude a and the steepness " D ak. The wavenumber of the carrier wave k
is then determined directly from a and ", while the frequency ! is derived from the
linear dispersion relation. These parameters should be carefully chosen in order to
keep the nonlinearity within a reasonable range to avoid wave breaking. The latter
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is especially dangerous for pulsating solutions, such as multi-solitons and breathers,
distorting their expected dynamics. In addition, the wavelength of the excitations
should be adapted to the length and to the water depth h of the facility. The water
depth defines whether the governing NLSE is defocusing (kh < 1:363) or focusing
(kh > 1:363). The length of the tank should provide sufficient propagation distance
for the wave packet. It should also be kept in mind that larger wavelengths and
amplitudes result in stronger reflections from the beach located at the other end of
the wave flume.

Once the exact dimensional form of the NLSE solution � .x; t/ of interest is
established, the boundary condition is given by the corresponding expression of the
surface elevation at a spatial co-ordinate x� that corresponds to the position of the
wave generator

�wave maker
�
x�; t

	 D Re
�
�
�
x�; t

	
exp

�
i
�
kx� � !t

	�	
: (20)

At this position, the NLSE solution � .x�; t/ provides both a specific amplitude
modulation as well as the phase of the carrier wave. These data allow accurate, to
first-order, ab-initio excitation of the wave packet. Higher-order Stokes components
appear rapidly in the medium due to the intrinsic nonlinear nature of water
waves and their magnitude depends on the chosen carrier steepness. Therefore, the
amplitude measurements at an arbitrary position must be compared to the NLSE
prediction by taking into account the second-order corrections

� .x; t/ D Re

�
� .x; t/ exp Œi .kx � !t/�C 1

2
k�2 .x; t/ exp Œ2i .kx � !t/�

�
: (21)

The wave gauges should be calibrated accordingly before starting the experi-
ments. The last gauge should be placed at a sufficiently large distance from the beach
in order to avoid the effect of reflected waves as much as possible. The experiments
for the defocusing NLSE case have been conducted in a facility with shallow-water
depth and with dimensions, described in [84]. The bright soliton and breather-type
solutions have been observed in a deep-water facility, described in [41].

5 Observations of Envelope Solitons on the Water Surface

In this section, we discuss laboratory experiments with dark solitons, followed by a
review of observations of bright stationary envelope solitons and recent observations
of multi-solitons.
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5.1 Dark Solitons

Dark solitons comprise a family of solutions with variable central amplitude smaller
than the background. The family is controlled by the parameter # . The gray solitons
have the smallest envelope amplitude depression when # is close to �=2. The other
limiting case when the parameter # is equal to zero corresponds to the black soliton.
The left panel in Fig. 5 shows the laboratory measurements of gray solitons with
# D �=6 for a dimensionless depth kh D 0:8 and a steepness " D 0:06. The right
panel in Fig. 5 shows the data for # D �=14, a dimensionless depth of kh D 0:9 and
a steepness of " D 0:07. The details of these measurements as well as the position
of the wave gauges can be found in [85]. The experimental parameters in Fig. 5
have been optimized for each value of the variable gray soliton velocity and the
envelope depression.

Two sets of measurements corresponding to the black soliton with # D 0 when
the envelope reaches the zero amplitude at the soliton center are shown in Fig. 6.
These time-series have been also optimized by the value of group velocity cg as
described in [84]. As a result, the dimensionless depth, the carrier amplitude and the
steepness parameter in the left panel were chosen to be kh D 1:2, a D 0:04 and
" D 0:12 respectively, while on the right panel, kh D 1:0, a D 0:02 and " D 0:08.

These laboratory measurements are a clear evidence of existence of dark solitons
in the case of water waves and confirm corresponding numerical hydrodynamic
simulations [86]. Namely, the initial dip generated according to NLSE theory stays
localized and does not change its profile when moving with the soliton group
velocity. At the same time, the phase velocity is different from the group velocity.
The carrier waves, having faster phase velocity, enter and exit the localized dip
without causing deformations to the stationary wave envelope. It has been shown
that dark solitons could cleanly propagate in the flume with the dimensionless depth

Fig. 5 Propagation of gray solitons in a wave tank with water depth h D 0:25m. Left panel:
The case of gray soliton with # D �=6 and carrier parameters a D 0:02m and " D 0:06. The
dimensionless depth kh D 0:8. Right panel: The case of gray soliton with # D �=12 and carrier
parameters a D 0:02m and " D 0:07 while kh D 0:9. Source: From [85]
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Fig. 6 Two examples of propagation of a black soliton (# D 0) in a water wave tank. Left
panel: Carrier parameters a D 0:04m, " D 0:12 and the dimensionless depth kh D 1:2. Right
panel: Carrier parameters a D 0:02m, " D 0:08 and the dimensionless depth kh D 1:0. Source:
From [84]

of up to kh D 0:6. The defocusing NLSE indeed describes well the nonlinear
dynamics of stationary wave packets in water wave facilities with finite water
depth. These observations in water waves are an additional proof of ubiquitous
applicability of defocusing NLSE in various branches of nonlinear physics. The
latter include observations of dark solitons in variety of nonlinear media such as in
Bose-Einstein condensates [39], in plasmas [87] and in optics [88].

5.2 Bright Solitons

The first envelope bright soliton observed on a water surface was reported back in
the 1970s by Yuen and Lake [89]. In the same work, the authors also discussed
experiments on collision of stationary envelope solitons in the wave flume, thus
confirming another fundamental property of bright envelope solitons in water waves.
Solitons have also been predicted [90] and observed [57] in optics opening the
whole new soliton branch of modern physics [38, 91]. Meanwhile, the NLSE soliton
knowledge in the water wave case was in a lethargic state (we do not discuss the
KdV equation here). However, recently, the bright envelope solitons have been
observed in a large wave flume for a carrier steepness of up to a remarkable value
of " D 0:3 [92]. The envelope solitons remained stationary over a significant
propagation distance, in excellent agreement with numerical simulations, based on
the higher-order spectral method (HOSM) [92]. For comparison, two parts of Fig. 7
show the measurements reported in [89] and [92], respectively.

These impressive observations confirmed the validity of the focusing NLSE in
describing the nonlinear propagation of surface water waves in time and space. In
the same work [89], the authors reported experiments showing that deviation from
the envelope soliton solutions result in the compression of the wave envelope in
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Fig. 7 Left: Propagation of the Sech soliton (shown as CASE a) for the initial steepness " D 0:14.
The Figure is taken from [89]. Right: Propagation of Sech soliton envelopes for significantly higher
steepness values " D 0:3. Both upper and lower panels on the right are taken from [92]

agreement with the NLSE simulations. As we will see in the next subsection, these
pulsating structures can be assigned to multi-solitons which were not known at that
time.

5.3 Multi-Soliton Solutions

Next, we discuss water wave experiments, which describe the evolution of multi-
solitons based on exact NLSE solutions. Figure 8 shows the evolution of the second-
and third-order Satsuma-Yajima solitons.

The carrier steepness has been chosen below the value when the wave breaking
starts. Higher-order solitons require even smaller steepness as their maximal
amplitudes and the degree of compression are higher. The third-order solution
requires a smaller steepness than the second-order solution. Generally, the higher
is the order of the solution, the lower should be the steepness. The convenience of
Satsuma-Yajima solitons is in the possibility to start them with the Sech-shape initial
condition multiplied by an integer. These initial conditions lead to a pulse compres-
sion in good agreement with the NLSE predictions. However, deviations from the
theory are unavoidable. These are growing with the increase of the order of the
solution and with the widening of their spectra. The most visible effect in Fig. 8 is
the accumulation of the asymmetry by the pulses that start from perfectly symmetric
initial conditions. The asymmetry increases with the growth of the local steepness.
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Fig. 8 Left: Evolution of the two-soliton solution in a water wave tank for carrier parameters
a D 0:005mm and " D 0:08. Right: Evolution of the three-soliton solution in a water wave tank
for carrier parameters a D 0:002m and " D 0:04. Source: From [100]

Fig. 9 Spectra of the multi-soliton Satsuma-Yajima solutions in experiment (left column), accord-
ing to the NLSE theory (middle column) and when using MNLSE simulations (right column).
Upper row corresponds to the two-soliton solution while the lower row to the three-soliton solution.
Parameters are the same as in Fig. 8. Source: From [100]

The use of more accurate equations with the addition of higher-order dispersion
to the NLSE and taking into account the mean flow provide a better approximation
of the evolution dynamics [93, 94]. This can be seen from the comparison of
experimental and numerical data in Fig. 9. The necessity of corrections and the
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use of the modified nonlinear Schrödinger equation (MNLSE) has been stressed
by Trulsen and Dysthe in [95, 96].

In analogy with the corresponding phenomenon in optics, perturbations of the
NLSE and the increase of the number of solitons in the solution may cause an
irreversible fission of the pulse into several fundamental solitons [97]. In the
spectral domain, this corresponds to an irreversible broadening of the spectrum, a
phenomenon known as supercontinuum generation [58, 97–99]. Figure 10 shows the
similar hydrodynamic supercontinuum generation for initial conditions 4 sech .X/
which contains four solitons [100]. Here, carrier amplitude is a D 0:001m and
the steepness is " D 0:04. Due to the strong higher-order perturbation of the
NLSE, the initial Sech-shaped envelope splits into fundamental solitons during
the evolution [96]. This can be seen from the upper panels in Fig. 10. Moreover,
the spectra computed from the experimental measurements in the flume at 10 m
from the wave maker, shown in the lower panels in Fig. 10, reveal the generation
of a supercontinuum, in complete agreement with MNLSE simulations. These
experiments highlight once again the interdisciplinary and universal feature of the
NLSE dynamics and similar roles of its higher-order perturbations in optics and
hydrodynamics.

Fig. 10 Top left: the wave profiles of the fourth-order Satsuma-Yajima soliton measured at 1 and
10 m from the wave maker, respectively, for the carrier parameters a D 0:001 m and " D 0:04. Top
right: numerical MNLSE simulations, corresponding to this experiment. Bottom left: spectra of the
measured wave profiles, shown in the top left panel. Bottom right: spectra obtained from MNLSE
simulations for the same measurement positions. Source: from [100]
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6 Observations of Breathers on a Finite Background

The behavior of hydrodynamic MI has been studied experimentally in [23, 101]. In
these laboratory studies, the MI on the water surface has been triggered in a standard
way by adding small side-bands to the wave carrier frequency making it unstable.
At present state of knowledge, the use of exact NLSE solutions allows us to initiate
the MI dynamics at any stage of its spatial or temporal evolution. In this section,
we report the laboratory experiments with observation of breather solutions on a
finite background. The latter are the key models in understanding the dynamics of
modulationally unstable water waves. They may serve as the possible explanation
for oceanic rogue waves. In the following plots, all curves showing the laboratory
measurements are depicted in blue, whereas the corresponding theoretical NLSE
predictions to second-order in steepness are shown in red.

6.1 Fundamental Periodic Breathers

The observation of ABs and KM solitons have been reported in [62]. Here, we
present the same measurements, starting with ABs. ABs are specific NLSE solutions
describing the full evolution of MI and the related exponential growth rate at its
starting stage. ABs comprise a family of solutions with a free parameter a or
equivalently, the modulation wavenumber K. In dimensional units, for any given
modulation wavenumber K, the maximal expected amplitude of an Akhmediev
breather is given by Osborne [3], Onorato et al. [102]

j�Ajmax D 1C 2

s
1 �

�
K

2
p
2k2a

�2
: (22)

This amplitude can be considered as the amplification factor provided that the
background is 1. In the experiments, the amplitude of the carrier has been fixed
to a D 0:005m for all periodic ABs and KMs. Figure 11 shows two cases of an
AB evolution for a D 0:46 and a D 0:49 and for steepness values of " D 0:09 and
" D 0:08, respectively. Increasing the parameter a in the allowed range a 2�0I 0:5Œ
increases the modulation period. The amplitude amplification also increases and
converges to three at the upper limit.

The comparison of experimental observations of the ABs at the maximal wave
compression with the NLSE solution to the second-order correction in steepness
is shown in Fig. 12. The wave dynamics which starts from the constant amplitude
background with small perturbation, reaches the maximal amplitude of the breather
nearly at the end of the flume. This is the curve recorded at 9 m mark in Fig. 11.
It is repeated in larger scale in Fig. 12. A very good agreement between the
measurements given by the blue curve and the theory predictions shown by the red
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Fig. 11 Left: Evolution of an AB in a wave flume for a D 0:46 and the carrier parameters a D
0:005m and " D 0:09. Right: Evolution of an AB in a wave flume for a D 0:49 and the carrier
parameters a D 0:005m and " D 0:08. Source: from [62]

Fig. 12 Left: Comparison of the last wave flume measurement (blue curve, the same as the upper
curve in the left panel of Fig. 11) with the theoretical surface elevation calculated using the NLSE
solution to the second-order correction in steepness (red curve). Right: Comparison of the last wave
flume measurement (blue curve, the same as the upper curve in the right panel of Fig. 11) with the
theoretical surface elevation calculated using the NLSE solution with the second-order correction
in steepness (red curve). Source: from [62]

curves can be noticed. The agreement is achieved basically on all parameters: on the
value of the modulation periods, the maximal amplifications reached as well as the
overall shapes of the wave profiles.

The next two cases dealing with the KM soliton propagation on the water surface
are shown in Fig. 13. The soliton parameters here are a D 1:2 and a D 0:9

while the steepness values are " D 0:08 and " D 0:09, respectively. The maximal
amplitude of the KM soliton increases with increasing the parameter a. The KM
soliton stays as a localized formation on a background during the whole time of
evolution. The amplitude is periodic with the maximal value in each case reached
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Fig. 13 Left: Evolution of a KM soliton in a wave flume for a D 1:2 and the carrier parameters
a D 0:005m and " D 0:08. Right: Evolution of a KM soliton with a D 0:9 and carriers parameters
a D 0:005m and " D 0:09. Source: From [62]

Fig. 14 Left: Comparison of the last wave flume measurement (blue curve, the same as the upper
curve in the left panel of Fig. 13) with the theoretical surface elevation calculated using the NLSE
solution to the second-order correction in steepness (red curve). Right: Comparison of the last wave
flume measurement (blue curve, the same as the upper curve in the right panel of Fig. 13) with the
theoretical surface elevation calculated using the NLSE solution with the second-order correction
in steepness (red curve). Source: From [62]

at the 9 m mark along the flume. The comparison with the theoretical predictions is
done for the curves recorded at this location. The curves are repeated in a larger scale
in Fig. 14 (blue curves) for the sake of comparison with the theoretically predicted
ones. In each case, the experimentally observed maximal amplitudes and the wave
profiles in general are in very good agreement with the theoretically predicted ones
(red curves).
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6.2 Doubly-Localized Breathers

The Peregrine solution has been first found back in 1983 [70] but attracted
attention of experimentalists only recently. It has been observed in optics [40], in
hydrodynamics [41] and in plasmas [103]. Experiments in optics are designed to
deal with periodic signals. Consequently, the Peregrine solution has been observed
as the limiting case of AB with the modulation period increased to large values when
the AB solution is transformed into the Peregrine solution [40]. On the contrary, in
hydrodynamics, we can deal with isolated events preparing initial conditions for
a single Peregrine solution. The first reported hydrodynamic observation of this
solution [41] is shown in Fig. 15. Parameters of the background wave are chosen
to be a D 0:01 cm and " D 0:11. The evolution plots presented in Fig. 15 illustrate
the reason why the Peregrine solution can be considered as prototype of oceanic
rogue waves [71]. The evolution starts with the background wave which is only
slightly perturbed locally. The perturbation grows by itself reaching an amplitude
that is three times the amplitude of the background wave. Without the preliminary
knowledge of this possibility, we could think that the high amplitude wave packet
appears from nowhere.

Another interesting possibility in observation of this solution is an experiment
in which the carrier phase is shifted by � . The consequence is a formation of a
single deep trough rather than a high single peak. Such waves do exist in reality and
have been recorded in the oceans [2]. They are as dangerous for ships as the rising
upwards rogue waves. Figure 16 shows the observation of such a rogue wave hole in
a laboratory for the same set of the carrier parameters as in the previous case. Other

Fig. 15 Evolution of a Peregrine breather in a wave flume for carrier parameters a D 0:01m and
" D 0:11
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Fig. 16 Evolution of a Peregrine breather hole in a wave flume for carrier parameters a D 0:01m
and " D 0:11. Source: From [104]

similar observations for various sets of the background wave parameters have been
reported in [104].

The limited length of the flume in most cases does not allow us to see the
full growth-decay cycle of the Peregrine breather. To overcome this difficulty, the
initial conditions must be chosen to start the breather at more advanced stages of its
evolution. Then, it is possible to observe the maximal breather compression point
at a distance closer to the wave maker. This allows us to see not only the growth of
the breather but also its decay. These observations prove that rogue waves not only
“appear from nowhere” but also “disappear without a trace” [72]. In the experiments
shown in Fig. 17 taken from [105], the initial conditions have been chosen to observe
the maximal wave compression in the middle of the tank. Here, variations of the co-
ordinate x� for setting the initial conditions must be followed by decreasing the
background amplitude to a D 0:005m while keeping the same steepness value
" D 0:11 as before. The wave packet here starts from a larger localized perturbation
of the background. It reaches the expected amplitude amplification of three at the
mark 4.60 m. The amplitude decreases after reaching the maximum value exactly in
accordance with the theoretical Peregrine solution.

Additional confirmation that we are dealing with the Peregrine solution is the
comparison of the experimental and theoretical wave profiles at the point of maximal
amplitude. Figure 18 shows three wave profiles for the same carrier steepness of " D
0:11 but for different values of the background amplitude a D 0:01m, a D 0:02m
and a D 0:03m, respectively. The experimental and theoretical curves are close to
each other in the middle of the breather and at the left hand side of it. The asymmetry
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Fig. 17 Growth—decay cycle of the Peregrine breather with the maximal amplitude reached at
4.60 m from the wave maker. The background wave parameters are a D 0:005m and " D 0:11

Fig. 18 Comparison of experimental observations (blue curves) of Peregrine solutions at the point
of maximal wave amplitude with the NLSE predictions (red curves) for the same background
steepness value " D 0:11 but for three different background wave amplitudes: a D 0:01m (upper
curves), a D 0:02m (middle curves) and a D 0:03m (bottom curves)
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and discrepancy at the right hand side are caused by the higher-order terms discussed
above that are missing in the NLSE. We should also take into account the fact that
the steepness of the wave is close to the wave braking limit which is " D 0:12. This
causes significant deviations from the predicted profiles.

The reduction of the carrier steepness in the experiments improves its agreement
with the theory. Figure 19 shows three sets of experimental data for a single value
of the carrier wavenumber k D 11:63m�1 but three values of the steepness: " D
0:08, " D 0:05 and " D 0:02. As expected, when decreasing the steepness of the
waves, the measurements are in a better agreement with the NLSE predictions. The
agreement is almost perfect for the lowest value of " D 0:02. Limitations of the
NLSE in this case are minimal.

The high amplitude amplification of three above the background is quite
remarkable and impressive although this is not the highest amplitude that could be
reached. Higher-order doubly-localized AP breathers provide even larger maximal
amplitudes. These solutions reach higher wave amplifications but careful choice of
the carrier parameters should be done in setting the initial conditions [106, 107].
The evolution of a second-order AP breathers in the experiment and in the theory
for the carrier amplitude of a D 0:001m and the steepness " D 0:03 are shown in
Fig. 20. Here, we had to decrease the wave steepness to 0:03 in order to avoid the
wave breaking. Moreover, higher-order solutions require a much longer propagation
distance, compared to the basic Peregrine solution. As the tank length is shorter than
required, the experiment has been split into eight stages allowing therefore the total
propagation distance of 72 m, while measuring the waves 9 m from the wave maker
for each run.

Fig. 19 Comparison of experimental observations (blue curves) of Peregrine solutions at the
point of maximal wave amplitude with the NLSE predictions (red curves) for the same carrier
wavenumber k D 11:63m�1 but for three different steepness values: " D 0:08 (upper curves),
" D 0:05 (middle curves) and " D 0:02 (bottom curves)
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Fig. 20 Wave profile evolution of a second-order AP breather in experiment for a D 0:001m and
" D 0:03 (left) and as described with the NLSE theory (right)

More plots and a video, demonstrating the impact of the waves on a small boat are
presented in [106, 107]. Observations of the third-, the fourth- and the fifth-order AP
breathers, having amplitude amplifications of seven, nine and eleven, respectively,
are shown in Fig. 21. In each of these cases, we can observe a reasonably good
agreement with the weakly nonlinear NLSE theory despite its expected limitations.
One inconvenience we have faced in experiments in a water wave facility is that
due to the amplitude increase with the order of the solution the steepness values of
the carrier had to be decreased accordingly. Otherwise, the wave breaking becomes
unavoidable. The most critical case in this regard is the fifth-order solution. The
initial condition at the last stage of this experiment has the amplitude amplification
of four which grows to eleven at the maximum point of the breather. Then the
increase of the steepness to " D 0:02 while keeping the same amplitude of
a D 0:001m indeed causes wave breaking, see [105]. Therefore, it is very difficult
to observe solutions higher than the fifth-order AP breather in water waves.
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Fig. 21 Top left set of panels: Comparison of experimental records of the third-order doubly-
localized breathers (blue curves) with the NLSE predictions (red curves) in three cases: upper
panel is for a D 0:0005m and " D 0:02, lower left panel is for a D 0:001m and " D 0:03

and lower right panel is for a D 0:002m and " D 0:04. Top right set of panels: Comparison
of experimental records of a fourth-order doubly-localized breathers (blue curves) with the NLSE
predictions (red curves) in two cases: the upper case is for a D 0:001m and " D 0:02 while the
lower case is for a D 0:003m and " D 0:03. Bottom set of panels: The upper plot shows the
theoretical profile of the fifth-order AP breather on the dimensionless .X; T/-plane while the lower
plot is the comparison of the corresponding wave tank measurements at X D 0 (blue curve) with
the NLSE surface wave profiles calculated for a D 0:001m and " D 0:01 (red curve) at the same
position. Source: From [107]

7 Discussions

To summarize, we have shown that the exact NLSE localized solutions can be
observed in water waves. The observation of both dark and bright solitons are in
good agreement with the NLSE, even in the case of comparatively large carrier
steepness values. Despite the NLSE restrictions related to its weakly nonlinear



80 A. Chabchoub et al.

third-order approximation, we have shown that the NLSE can reasonably accurately
model the dynamics of water waves. This modeling works well even for higher
steepnesses which is the case for multi-solitons and breathers on a finite background.
Another significant property of the NLSE such as its time-reversal invariance has
been validated for the Peregrine and for the second-order AP breathers in [108].
For higher wave amplitudes, the NLSE cannot describe the slight asymmetry of
the measured wave packets and their spectra. Higher-order corrections to dispersion
and nonlinearity are needed in that case. These corrections together with the mean or
Stokes flow lead to the MNLSE, also known as the Dysthe equation. This equation
provides a better correspondence between the theory and experiments [95]. These
corrections are highly efficient in modelling the multi-solitons and doubly-localized
Peregrine breathers [92, 100, 109]. On the other hand, decreasing the steepness
of the background waves or equivalently the nonlinearity in the dynamical system
improves the correspondence of experimental data even with the NLSE predictions.
Historically, the NLSE is the basic starting point of the whole new subject of rogue
waves in mathematics [74, 110–113]. Extending the boundaries of understanding
rogue waves naturally relies on the NLSE extensions [114–116] and other accurate
equations [67, 117, 118].

Higher-order extensions to the NLSE describe such fascinating phenomena as the
generation of supercontinuum [58] which is beyond the NLSE approximation. The
supercontinuum was observed not only in optics but also in hydrodynamics [100].
Such expansion of ideas from optics to other disciplines makes the NLSE extensions
as universal as the NLSE itself [119]. These extensions can be both integrable [114,
115, 120, 121] and non-integrable [122]. They can even contain an infinite number
of terms [123, 124]. In either case, breather solutions do exist and their importance
in physics cannot be overestimated [64–66]. They appear not only at macroscopic
scales like in the oceans but also in quantised superfluids [125].

In absence of integrability and exact solutions, the most efficient technique to
study rogue waves is numerical simulations. Numerical simulations of doubly-
localized breathers analogous to the Peregrine solution using the fully nonlinear
governing equations and the boundary element method have been reported in [126].
The NLSE limitations have been also discussed and analyzed using numerical
simulations based on HOSM in [92, 127]. Most accurate hydrodynamic approach
is based on the two-phase Navier-Stokes equations and corresponding simulations
have been reported in [128, 129].

The theoretical knowledge and laboratory observations of breathers are taking
us one step closer to various engineering applications [130]. For example, specific
spectra such as the typical triangular spectra of the AB [131] and the Peregrine
solution may be used for rogue wave predictions [132–134] or generation of ultra-
wide band pulses [135]. Another approach to early detection of rogue waves is
a wavelet transform [136–138]. The Peregrine breather solution hitting a scaled
chemical tanker and its potential devastating effects on the ship are discussed
in [130].
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One more direction of research is air-water interaction that becomes important
when the MI leads to wave breaking [129]. The effects of wind [139–145] and
currents [146–148] on the MI are also important and deserve further studies.

We conclude with the strong belief that the world of integrable equations is an
important starting platform for the studies of complex natural phenomena which are
predominantly nonlinear, mostly wonderful and sometimes dangerous.
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Experiments on Breathers in Nonlinear Fibre
Optics

Bertrand Kibler, Julien Fatome, Christophe Finot, and Guy Millot

Abstract Since the seminal works by A. Hasegawa and co-workers in the 1980s,
the modulation instability phenomenon has been widely studied and used in
optical fibres, in particular for generating high-repetition-rate soliton trains and
for parametric amplification of weak signals. Modulation instability is also known
as a general precursor of highly localized wave structures through amplification
of perturbations. We review here the recent experiments performed in nonlinear
fibre optics that evidence a large class of exact pulsating solutions of the nonlinear
Schrödinger equation, called breathers. Based on the coherent seeding of the
modulation instability process, these results have shed new lights on extreme
nonlinear dynamics and related analogies between optics and hydrodynamics.

1 Introduction

The recent development of convenient nonlinear fibre optics-based experimental
setups revealed some intriguing similarities between extreme phenomena in optical
systems and the rogue wave phenomena well-known in hydrodynamics [1–4].
The simplest class of almost-conservative physical systems was first investigated
in detail, in particular due to the existing mathematical developments. Indeed,
analogies between hydrodynamics and optics are known since the 1960–1970s
thanks to two main findings: (1) the derivation of the soliton solution of the
nonlinear Schrödinger equation (NLSE) in the form of secant-hyperbolic shaped
(temporal or spatial) profile, and (2) the studies of the Benjamin-Feir/Bespalov-
Talanov (or modulation) instability [7–13]. Wave dynamics in weakly nonlinear
dispersive media, such as in optical Kerr media or on the surface of deep water,
can indeed be described by the NLSE. However, it was recently shown that this
correspondence applies even in the limit of extreme nonlinear wave localization
described by the common mathematical model [5, 6]. Besides the well-known
soliton solution, the NLSE also admits breather solutions on finite background, i.e.
pulsating envelopes that well mimic the dynamic of rogue waves that may appear
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from nowhere and disappear without leaving a trace. As a consequence, one can
simply address the issue of rogue waves in terms of NLS breathers whose entire
space-time evolution is analytically described [14]. For that reason and because of
their specific dynamical properties (i.e., ‘pulsating’ localized waves), these unstable
wave structures are originally considered as the simplest nonlinear prototypes of
famous hydrodynamic rogue waves [15], in particular the doubly localized breather
solutions (i.e., Peregrine soliton) [16]. Such solutions describe localized carrier
perturbations with a strong amplification, they provide support to the nonlinear stage
of the universal modulation instability (MI) phenomenon [17]. But surprisingly,
NLS breather solutions have remained untested experimentally during almost 30
years, until the development of fibre-based experiments taking advantage of high-
speed telecommunication-grade components.

It is worth mentioning that breather dynamics appear even with initial conditions
that do not fulfill the mathematical ideal. Optical studies have strongly contributed
to that end, thus confirming existence of breathers in nonlinear wave systems
driven by noise (or with a partial degree of coherence). In such conditions, both
competition and interaction between many unstable modes take place, so that rogue
waves may appear intermittently or randomly in space and time with long-tailed
statistics, as signatures of extreme-value phenomena [18, 19]. This represents a
major step forward towards global understanding of rogue wave emergence in
a turbulent environment and wave turbulence in integrable systems [20, 21]. We
distinguish two MI regimes. On the one hand, the noise-driven MI that refers to the
amplification of initial noise superposed to the plane wave leads to spontaneous
pattern formation from stochastic fluctuations. On the other hand, the coherent
seeded MI (or coherent driving of MI) refers to the preferential amplification of
a specific perturbation (i.e., leading to a particular breather solution) relative to any
broadband noise. In any case, the wave dynamics can be interpreted in terms of
breathers and competitive interactions. Most importantly, the coherent seeded MI
can be used to efficiently stabilize and manipulate the output wave, thus allowing to
generate and quantitatively measure NLS breather properties in optical fibres.

In the following, we focus on the simplest breather solutions on finite background
of the NLSE and we review their recent experimental evidence in nonlinear fibre
optics. In Sect. 2, we provide the basic theoretical description for first- and second-
order NLS breathers. In Sect. 3, we describe the distinct experimental configurations
for observing breather propagation in optical fibres. We analyse the impact of
different techniques to seed the MI process through numerical simulations. Section 4
presents the different experimental measurements of breathers in optical fibres
that confirm predictions from the nonlinear wave theory. Finally Sect. 5 provides
conclusions and an outlook on novel research directions.
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2 Nonlinear Schrödinger Breathers

The phenomenon of modulation instability is usually studied in its simplistic version
based on the pioneering works done in the 1960s; the effect was understood as an
instability of the plane wave against the long-wave modulation and associated with
the growth of spectral sidebands. A linear stability analysis is then performed to
identify the instability criterion and to evaluate the initial growth rate of sidebands.
This gives the basic information such as the perturbation frequency that experiences
the maximum gain and defines the MI period. However, the above analysis only
provides snapshots of the initial steps of MI and the whole of its dynamical evolution
is not available. In particular, the dynamics of cascade of MI gain bands that
generates the highly localized wave structures cannot be described. MI clearly
exhibits much richer dynamics when one goes beyond the simplistic linear stability
analysis [22, 23]. As an example, the long space evolution may exhibit the Fermi-
Pasta-Ulam (FPU) recurrence phenomenon for the coherent seeded MI. Later,
researchers also focused on approximate truncated or purely numerical approaches
to address this problem in the 1990s [24–26].

However, the NLSE belongs to the remarkable class of integrable systems [7]
and can be solved by using the inverse scattering transform method or other
integration techniques. Surprisingly, exact breather solutions were derived during
the 1970s–1980s, but remained untested. It concerns the simplest solutions that are
either periodic in space and localized in time or periodic in time and localized in
space; they are referred to as Kuznetsov-Ma breathers and Akhmediev breathers,
respectively. Taking the period of both solutions to infinity gives rise to a first-
order doubly localized breather on finite background: the Peregrine soliton. In the
following we first review their properties. To this purpose we refer to the following
scaled form of the self-focussing NLSE used to describe nonlinear wave propagation
in an optical fibre:

{
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@�
C 1

2

@2 

@�2
C j j2 D 0 (1)

Here,  is a wave envelope of the optical field which is a function of � (a
scaled propagation distance or longitudinal variable) and � (a co-moving time, or
transverse variable, moving with the wave-group velocity).

2.1 First-Order Breathers

A general one-parameter breather solution on finite background for the NLSE
can be written compactly, as previously suggested in several works [27, 28], in
particular when one aims to study the most well-known first-order solutions such
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as Kuznetsov-Ma, Akhmediev and Peregrine breathers.

 .�; �/ D e{�
�
1C 2.1� 2a/ cosh.b�/C {b sinh.b�/p

2a cos.!�/ � cosh.b�/

�
(2)

Here, the governing parameter a determines the physical behaviour of the
solution through the function arguments b D Œ8a.1� 2a/�1=2 and ! D 2.1� 2a/1=2
directly linked to space and time evolution, respectively.

2.1.1 Kuznetsov-Ma Breathers

The first breather type solution on finite background for the NLSE was found in the
1970s by Kuznetsov, but also by Kawata and Inoue, and later by Ma [29–31]. They
solved the initial value problem for the NLSE where the initial state was the plane
wave solution perturbed by a large localized bump of soliton-type (such breathers
approach the plane wave solution at infinite time). These solutions are periodic in
space and localized in time; they are now referred to as the Kuznetsov-Ma Breather
(KMB) or soliton on finite background. Such solutions can be considered as a
limiting case of instability of the plane wave with respect to large perturbations.
Equation (2) describes such solutions when a > 1=2. The parameters ! and
b become imaginary such that the hyperbolic trigonometric functions become
ordinary circular functions and vice-versa. As a result, the spatial period of the
KMB is given by 2�=jbj, and the transverse localization is determined by 2�=j!j.
Figure 1 illustrates the KMB solutions for two distinct values of the parameter a.
The maximal intensity occurs at � D 0. The ratio of the maximum intensity to the
background is always higher than 9. We clearly note that spatial period and temporal
localization are inversely proportional to a, whereas the maximal peak intensity is
proportional to a. When a ! 1 the KMB solution tends to the standard soliton
solution, a localized sech pulse with stable and uniform propagation.

Fig. 1 Space-periodic KM breathers on a background plane wave j .� ! ˙1/j D 1 for the
following values of the governing parameter: (a) a D 0:9 and (b) a D 0:55
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Fig. 2 Peregrine breather
solution

2.1.2 Peregrine Breather

In 1983, D.H. Peregrine found a non-trivial solution in the limit of zero amplitude
perturbation of KM breathers. It also corresponds to the infinite-period limiting case
of previous solutions (i.e., a D 0:5). Apart from a simple exponential factor it is a
rational function (see Eq. (3)), and it describes an isolated “intensity peak” in space-
time arising out of the plane wave solution [16], as shown in Fig. 2. The Peregrine
breather (PB) exhibits a ratio of the maximum intensity to the background equal
to 9.

 .�; �/ D e{�
�
1 � 4.1C 2{�/

1C 4�2 C 4�2

�
(3)

2.1.3 Akhmediev Breathers

Later in the 1980s, Akhmediev et al. found a one parameter family of time-
periodic solutions with the property that they approach the plane wave solution at
infinite propagation; they breathe only once in space [17, 32]. They exhibit FPU-
like growth-return evolution and are now widely referred to as the Akhmediev
Breather (AB). These solutions are valid for initial periodic and small modulations
of the plane wave (i.e. a single sideband perturbation into the MI gain band). Such
solutions are given by Eq. (2) for 0 < a < 0:5, two examples are presented in
Fig. 3. Indeed AB solutions are valid over the range of modulation frequencies that
experience MI gain: 0 < ! < 2. Note that the parameter b > 0 also governs the MI
growth and corresponds to the MI gain calculated from the linear stability analysis.
The maximum value b D 1 is obtained for a D 0:25 (! D p

2). These time-periodic
solutions provide, as a first step, a powerful framework with which to describe the
full MI dynamics. The temporal period of the AB is given by 2�=j!j, and the spatial
localization is determined by 2�=jbj. Contrary to the KMB, temporal period and
spatial localization are here proportional to a, and the maximal peak intensity is still
proportional to a, but lower than 9. When a ! 0 the AB solution tends to the plane
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Fig. 3 Time-periodic Akhmediev breathers on a background plane wave j .� ! ˙1/j D 1 for
the following values of the governing parameter: (a) a D 0:35 and (b) a D 0:05

wave solution, while for a ! 0:5 (i.e., infinite-period) the AB solution tends to the
Peregrine breather solution.

2.1.4 Localisation Properties

A crucial property of rogue waves is the maximum amplification of the perturbation
with respect to the background wave. It clearly appears that the Peregrine breather
does not exhibit the highest peak amplitude when including KM solutions. A wide
range of a values gives a maximal amplification ratio beyond the factor of two.
Besides this amplification factor, another key feature of rogue structures that cannot
be avoided is related to their localization in space and time. The maximal spatio-
temporal localisation is associated to the limiting case of PB, thus confirming
extreme characteristics of PB emergence from the plane wave. The degree of
localization can be determined in terms of ratios of the temporal and spatial periods
(�per D 2�=j!j and �per D 2�=jbj) relative to the individual temporal and spatial
peak widths (�0 and �0). These can be readily calculated analytically from Eq. (2)
as a function of parameter a. The profile temporal width �0 is found with time
coordinates for which the intensity is zero-valued adjacent to the peak (zeros only
appear in the profile for a > 1=8). The spatial width �0 is found with space
coordinates for which the intensity is half of the peak intensity (only valid for
profiles with a < 1:1). We then defined the spatio-temporal localization as the
following product .�per=�0/.�per=�0/, similarly to [5].

A general description of first-order breather solutions with varying group velocity
in the plane .�; �/ can be found in recent works [18, 33–35]. Some of them are also
called quasi-Akhmediev breathers. Such breathers are neither periodic in time nor
in space, they exhibit double quasi-periodicity and the line of maxima is tilted with
respect to the line � D 0, so that one can define the velocity as the tangent of the
angle between this line and the temporal axis [33]. However, the amplification of
each peak almost remains aligned with the propagation direction. These solutions
have a chance to collide (when choosing appropriate distinct velocities) and generate
a giant intensity wave when synchronization of peaks is satisfied.
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2.1.5 Spectral Description

In the case of Akhmediev breathers, one can easily find exact analytic expressions
for the evolution of spectral components. During the initial stage of propagation, the
sidebands experience exponential growth at the expense of the pump, as expected
from the linear stability analysis of the modulation instability process. However the
subsequent dynamics of energy exchange between multiple spectral modes are more
complex. The AB solution describes growth and decay of a harmonically perturbed
plane wave. In addition to the temporal description, expansion in a Fourier series
and integration yield exact solutions for the pump and spectral harmonic amplitudes
as a function of propagation distance [17, 36]:

A0.�/ D �1C {b sinh b� C !2 cosh b�p
cosh2 b� � 2a

(4)

An.�/ D {b sinh b� C !2 cosh b�p
cosh2 b� � 2a

�
"

cosh b� �
p

cosh2 b� � 2ap
2a

#jnj

where A0 and An are the amplitudes of the pump and the nth sideband (n D ˙1;˙2;
etc.), respectively, and ignoring factors of constant amplitude and phase. The sum
jA0j2C˙ jAnj2 is equal to 1, which is equivalent to the conservation of energy. When
� ! ˙1, all the energy is concentrated in the pump, whereas for � ! 0 the energy
of sidebands increases and the pump is progressively depleted. At the maximum
spectral broadening (i.e., the maximum compression of the localized structure on
finite background), the spectral amplitudes of the pump and the nth sideband are
A0 D 1 � ! and An D !Œ.1 � .1 � 2a/1=2/=.2a/1=2�jnj, respectively. Equation (4)
exactly predicts the dynamics of an arbitrary number of sidebands without any
assumption of an undepleted pump. Figure 4 illustrates the growth-decay cycle
of sideband generation related to the spectral evolution of the AB solution for
a D 0:25. The spectrum is associated with an exponentially decaying energy
transfer from the pump frequency, it also reveals a characteristic universal triangular
spectral form, when analysed logarithmically [37]. Moreover, the reciprocal energy
exchange between the pump mode and an infinite number of side modes can be
related to the FPU recurrence [38, 39].

As the triangular feature of the envelope spectrum on a log scale appears at
an early stage of their evolution, this raises the possibility of early detection of
breather emergence in chaotic optical fields [40], in particular by considering real-
time measurements of optical spectra [41, 42]. The triangular spectral decay of the
wings can be also easily calculated for the Peregrine breather [40].
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Fig. 4 Typical evolution of AB spectrum (here a D 0:25). (a, b) 3D illustration of both temporal
and spectral intensities from Eqs. (2) and (4). (c) AB power spectrum at maximum sideband
generation (i.e., at � D 0). (d) Evolution of intensities of the pump and the most significant
sidebands along propagation distance

2.2 Second-Order Breathers

The NLSE also admits higher-order breather solutions. These higher-order solutions
can be interpreted as a nonlinear superposition of two or more first-order breathers.
Such complex waves offer the possibility of higher energy concentration in space
and time, and the generation of waves with giant intensity peaks. Here we consider
the nonlinear interaction of two first-order breathers, i.e. a second-order breather
solution [32]. By employing the recursive Darboux method [43], one can found
an explicit analytic form for the two-breather solution of the NLSE with two
independent governing parameters aj (with j D 1; 2) related to each breather, as
reported in [44]:

 12.�; �/ D e{�
�
1C G C {H

D

�
(5)
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Equation (5) describes various nonlinear combinations of Akhmediev breathers
and Kuznetsov-Ma breathers with distinct governing parameters 0 < a1;2 < 0:5

or a1;2 > 0:5. Each first-order breather j in the higher-order solution is described
by the governing parameter aj, the function arguments !j D 2.1 � 2aj/1=2 and
bj D Œ8aj.1�2aj/�1=2, and a shifted point from the origin .�j; �j/. The above solution
describes the full wave evolution of a second-order breather during its nonlinear
propagation, where �sj D � � �j and �sj D � � �j are shifted variables. When �1 D
�2 D 0 and �1 D �2 D 0, we consider a synchronized nonlinear superposition at the
origin.

Figure 5 illustrates a few examples of second-order breathers, in particular
by highlighting the importance of the synchronization of the interaction between
breathers. The nonlinear interaction strongly depends on the centring of the two
elementary solutions in the plane .�; �/ [32], i.e. when their peak coincide. If the
centres of the elementary solutions are separated by a large distance (time) shift
along the �.�/ axis, the superposition tends to be linear, which prevents from the
emergence of a giant intensity wave. Another degenerate solution can be found in
the limit of equal governing parameters. In such a case, these degenerate solutions
consist of two near-parallel lines almost periodic in structure, with only one point
of intersection [44]. In the limit of infinite periods, this allows to fully establish the
hierarchy of synchronized second-order breather solutions, ranging from the general
case to the higher-order rational breather via degenerate breathers.

Fig. 5 Various forms of the second-order breather solution on finite background. (a) Nonlinear
superposition of two ABs with a1 D 0:1, a2 D 0:4, �1;2 D 0, �2 D ��1 D 4. (b) Same parameters
than in case (a) with synchronization at the origin �1;2 D 0. (c) Nonlinear superposition of one AB
with one KMB: a1 D 0:25, a2 D 0:8 (synchronized collision at the origin: �1;2 D 0, �1;2 D 0)
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General multi-breather solutions with more than two elementary breathers can
still be studied, but their analytic expressions become very complex. For instance, a
general N-breather solution of the NLSE was recently found by using the dressing
method [34]. Such theoretical solutions are of considerable importance to fully
describe the nonlinear stage of the modulation instability for arbitrary perturbation
of the plane wave. However, for a good qualitative description of the higher-
order wave structures generated, one may restrict the study to the doubly localized
breathers in space and time, also called rogue-wave solutions. They exhibit a unique
hierarchical structure with relatively convenient analytical forms. The lowest-order
solution is known as the Peregrine breather [16], the second-order solution was
first introduced in 1985 [32] and recently introduced in the context of rogue waves
[45]. We then refer the reader to [46] and the references therein for a complete
classification of higher-order rogue-wave solutions.

3 Experimental Configurations in Nonlinear Fiber Optics

Rogue energy localizations can be described by using theoretical breather solutions
in various nonlinear dispersive systems, as reported in many theoretical or numerical
works [15, 18, 47]. To confirm such an approach, as a first step, this requires their
experimental evidence in real physical systems. Of course, rogue waves are not just
an offshoot of such solutions, other mechanisms depending on the physical system
must be taken into account, including the statistical approach when noise is present
[4]. Besides its first evidence in optics, the Peregrine breather was later confirmed in
other fields of physics driven by the NLSE, namely in hydrodynamics and plasma
physics [6, 48]. In water wave experiments, the initial wave profiles are generated
with a paddle located at one end of a tank. An electric signal, derived from the exact
mathematical expression describing the water surface elevation, drives the paddle
to directly modulate the surface height. Specific initial modulations such as a ratio
of polynomials have been applied to the wave maker to excite rogue-wave solutions
[49, 50]. But ideal perturbations in optics are nontrivial to synthesize in the temporal
domain. Then, the first experimental studies in optics used non-ideal periodic
perturbations based on widely accessible techniques in practice, such as the beating
of two narrow-linewidth lasers to create an initial low-frequency-modulated wave
or by means of usual electro-optic (intensity) modulators at gigahertz frequencies
[5, 51]. Breather waves are then observed when such small- or large-amplitude
perturbations on a high-power continuous wave (cw) become strongly focused due
to the nonlinear wave reshaping occurring into an optical fibre. It was also observed
that non-ideal initial perturbations sometimes lead to the generation of complex
behaviours that may differ from the expected breather [52]. The sensitivity to initial
perturbations depends on the complexity or order of the solution (i.e., the order
of energy localization). There is always a tradeoff between the simplicity of the
initial modulated wave (inherent to experiments) and the degree of accuracy with
which we reach the mathematical ideal. Consequently, it was recently proposed to
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introduce the advantages of ultrafast optics technology and programmable optical
pulse shaping to study higher-order breathers, since this allows the generation of
nearly arbitrarily shaped optical waveforms. The optical processing is then based on
spectral line-by-line shaping of a frequency comb source (i.e., a Fourier-transform
optical pulse shaping) in order to provide the ideal excitation of breather solutions
in terms of phase and amplitude [53, 54].

In the following, we describe in more details the different experimental setups
implemented to generate optical breathers, and we give some physical insights on
the corresponding nonlinear dynamics drawn from numerical simulations of the
NLSE.

3.1 Experimental Setups

Figure 6 depicts three different experimental configurations used to observe breather
dynamics in nonlinear fibre optics. All the test-beds are based on commercially-
available high-speed telecommunications-grade components.

These experimental configurations only differ in the linear shaping of the initial
perturbation imposed to the cw. The beating of two lasers and the electro-optic
modulation (see Fig. 6a, b) allow us to induce a simple sinusoidal perturbation
in the temporal domain whose both amplitude and frequency can be controlled.
However, in the spectral domain, the beating configuration corresponds to an

Fig. 6 Experimental configurations for observing breather dynamics in nonlinear fibre optics and
based on three distinct linear shapings of the initial periodically-perturbed continuous wave: (a) the
beating of two narrow-linewidth lasers whose perturbation frequency depends on their frequency
spacing, (b) the electro-optic (intensity) modulation of a narrow-linewidth laser at a frequency
given by a RF clock, (c) the linear shaping of an optical frequency comb source driven by a RF
clock. ECL: external-cavity laser. FROG: frequency-resolved optical gating. Note that a phase-
modulation stage to mitigate the detrimental effect of Brillouin scattering [55] is also required in
the different linear-shaping configurations
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asymmetric initial condition with a strong cw (i.e., ECL1 plays the role of the
pump) perturbed by a weak single sideband (i.e., ECL2 plays the role of the seed)
shifted by ˝ from the pump. The amplitude and frequency detuning of the second
laser has to be finely controlled to choose the required perturbation. While in the
case of the electro-optic modulation (typically a LiNbO3 intensity modulator), the
initial condition is a symmetric spectrum with a strong pump perturbed by a pair
of sidebands shifted by ˙˝ from the pump. Here the amplitude and frequency
detuning of the perturbation is changed through an external RF signal generator.
In any case, these two configurations cannot exactly generate ideal perturbation of
the cw derived from previous theoretical expressions. We are limited to periodic
modulations and particularly sinusoidal perturbations, and there is no control of
the phase difference between the spectral components [56]. The third configuration
overcomes this important issue by spectrally shaping both relative phase and
intensity of each line of a frequency comb source [57, 58]. The programmable pulse
shaper allows the generation of nearly arbitrarily shaped optical wave forms, in
particular through a time-periodic pattern whose frequency is equal to the spectral
separation of the comb lines. High resolution (about 1 GHz) systems are available
to select and control individual spectral peaks [59]. The initial frequency comb
can be generated by the implementation of variable-repetition-rate pulse source
based on the nonlinear compression of an initial sinusoidal signal in a cavity-less
optical-fibre-based device (i.e., similar to the second configuration or see [60]).
The spectrum of such a pulse source can be approximated as a series of Dirac ı
functions separated by the repetition rate. The width of the comb envelope depends
on the nonlinear compression of the initial modulated cw and it determines the
number of sidebands and their decreasing amplitude. A phase modulator is also
introduced in the two first configurations or in the above frequency comb source to
prevent the detrimental effect of stimulated Brillouin backscattering. Note that all
the configurations restrict the experiments to study periodic perturbations of the cw,
or to fit the limited time-window over which we can inscribe localized perturbation
(the latter implies that no interaction occurs between neighbouring elements of the
periodic pattern on the studied distance).

Whatever the linear shaping of the perturbed cw, an erbium doped-fibre amplifier
(EDFA) is then used to amplify the average power of the synthesized wave before
coupling into a single-mode optical fibre to undergo nonlinear propagation. The
average power of the input wave is fixed so that it satisfies the value of the
governing parameter a of breathers according to the fibre properties (see below
for rescaling in dimensional units). At the fibre output, the optical wave profile
is typically characterized using a high-dynamic-range optical spectrum analyser
and an ultrafast optical sampling oscilloscope with subpicosecond resolution, or
an adapted frequency-resolved optical gating (FROG) technique to retrieve the
intensity and phase of periodic pulse trains on finite background fields [61].

To reconstruct the growth-decay intensity dynamics of breathers along propa-
gation, distinct methods were already used. The direct (and destructive) method is
based on cutback experiments, the low cost standard single mode fibre SMF-28
is well-suited for such measurements. More recently and inspired by hydrodynamic
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experiments, an original approach of short propagation sequences for reconstructing
the full wave evolution was reported. It benefits from the programmable wave
shaper to shape repetitively different initial shaped conditions for a fixed and short
nonlinear propagation length [54]. First, we begin with initial conditions fixed
from theory at an arbitrary position from the maximal breather amplitude and we
record the wave profile at the fibre output. This provides in the next step the new
initial condition. Several iterations of this recording process enable to reach a long
propagation distance without detrimental fibre losses.

The correspondence between theory and experiment can be retrieved by recalling
that dimensional distance z (m) and time t (s) are related to the previous normalized
parameters by z D �LNL and t D � t0, where the characteristic (nonlinear) length and
time scales are LNL D .�P0/�1 and t0 D .jˇ2jLNL/1=2, respectively. The dimensional
field envelope U.z; t/ (W1=2) is U D P1=20  , P0 being the average power of the input
wave. The modulation frequency ! of a single breather is related to the general
governing parameter a by 2a D Œ1 � .!=!c/

2�, where the critical frequency value
of the modulation instability gain is given by !2c D 4�P0=jˇ2j [62]. ˇ2.< 0/ and �
refer to the group-velocity dispersion and the nonlinear coefficient of the fibre used,
respectively [55]. Consequently, the corresponding dimensional form of the NLSE
is written as follows:

{
@U

@z
� ˇ2

2

@2U

@t2
C � jUj2U D 0 (6)

As an example, the observation of the AB with a D 0:45 in the standard
telecommunication single-mode fibre SMF-28 at 1550 nm (ˇ2 D �21 ps2 km�1 and
� D 1:2W�1 km�1) requires an initially 20-GHz modulated continuous wave with
average power equal to P0 D 0:7W.

3.2 Impact of Initial Conditions

Here, we discuss the impact of non-ideal initial conditions on the generation
of breathers, in particular when temporal periodic perturbations are used. We
performed numerical simulations based on the NLSE with three distinct input
conditions for the modulated continuous wave in order to generate the AB with
a D 0:25, namely an ideal perturbation corresponding to the theoretical AB at � D
�3, and two simplified (non-ideal) perturbations with similar amplitudes induced
by an intensity modulator (i.e., symmetric two-sideband perturbation) or by a weak
single laser (i.e., asymmetric single-sideband perturbation). Figure 7a–c reports the
evolution dynamics of the corresponding temporal intensity profiles. Even in the
presence of very similar intensity modulation in the temporal domain as shown in
Fig. 7d, we observe that non-ideal initial conditions used in practice yield periodic
evolution as a function of propagation in contrast to the exact AB theory. However,
each growth-return cycle remains well-described by the analytic AB solution. The
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Fig. 7 Impact of initial conditions on AB dynamics during propagation (here in the case of a D
0:25) investigated through NLSE simulations. (a) Intensity evolution for exact initial condition
from Eq. (2). (b) Intensity evolution for the symmetric two-sideband perturbation induced by an
intensity modulator:  D p

1C 0:145 cos.!�/. (c) Intensity evolution for the asymmetric single-
sideband perturbation:  D 1C0:07 exp.�{!�/. Note that amplitudes of perturbation were chosen
to provide an initial contrast of modulation similar to the ideal case as confirmed in subplot (d).
Red circles correspond to the ideal initial condition. Solid black (dashed blue) curve corresponds
to the two-sideband (single-sideband) perturbation. (e) Comparison between the different intensity
profiles at maximum compression of the breather

profiles of the maximally compressed breathers are in excellent agreement (see
Fig. 7e). This agreement was confirmed over a range of modulation amplitudes
and for various modulation frequencies across the MI gain curve [62]. Such a
periodic evolution of the nonlinear stage of modulation instability as a function of
propagation is reminiscent to the fundamental FPU recurrence phenomenon, it may
be described by bi-periodic (elliptic) breather solutions [14].

We also notice that the breather propagates with a certain angle to the line � D
0 for the single sideband perturbation. Indeed, the inclined trajectory acts in the
first steps of the initial perturbation growth whose spectrum asymmetry induces a
distinct mean group velocity of AB compared to another symmetric perturbation.
Similar dynamics are also observed in the final decay of the breather cycle. It is
important to mention that the relative frequency position of the single perturbation
to the continuous wave enables the control of the mean group velocity of the AB.
The mean group velocity of the AB can be slower or faster than the group velocity
of the cw. It is therefore possible to control the group velocity difference between
two ABs (with distinct values of a) through a suitable choice of perturbations (with
opposite sign of modulation frequency) in order to favour the collision. A simple
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continuous wave that contains a bi-modulation by means of two spectral distinct
sidebands may provide the required conditions for breather collision [33, 53], and
the generation of a second-order breather.

The impact of initial conditions to generate the KMB with a D 1 is studied
in Fig. 8 through NLSE simulations with two different configurations, namely
the ideal perturbation at � D ��=jbj (i.e., half the period), and a simplified
periodic perturbation, induced by an intensity modulator, with similar amplitude
and temporal width as shown in Fig. 8c. The full width at half maximum �TFWHM

of the time-varying intensity (with maximal intensity Imax D .2
p
2a � 1/2) above

background of the ideal perturbation was used to determine numerically the optimal
frequency for the cosine modulation, as follows: ��sech D 1:8�TFWHM and fcos D
1=.2:4�TFWHM/. Figure 8a, b reports the corresponding evolution dynamics of the
intensity profiles. We observe that the cosine modulation yields periodic evolution
in good agreement with the exact KMB behaviour, only slight discrepancies appear
on the longitudinal period and the maximal peak power as revealed by Fig. 8d, e.
The strongly modulated wave well approximates the KMB over each modulation
cycle. The above analysis confirms that the periodic longitudinal dynamics observed

Fig. 8 Impact of initial conditions on KMB dynamics during propagation (here in the case of
a D 1) investigated through NLSE simulations. (a) Intensity evolution for exact initial condition
from Eq. (2). (b) Intensity evolution for the symmetric two-sideband perturbation induced by an
intensity modulator:  D p

.Imax C 1/=2C .Imax � 1/=2 cos.2� fcos�/. (c) Comparison of initial
conditions. Red circles correspond to the ideal case. Solid black curve corresponds to cosine
perturbation. (d) Comparison between the different intensity profiles at first maximum compression
of the breather. (e) Comparison of the intensity evolution as a function of propagation distance at
� D 0 to reveal the longitudinal periodicity
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with a large initial modulation on a finite background can be described and
interpreted in terms of Kuznetsov-Ma breathers [51]. It shows that KMB dynamics
can be obtained with very different conditions in NLSE propagation. Such periodic
evolution in the NLSE is also another example of FPU recurrence.

In some cases, non-ideal initial conditions lead to the observation of higher-
order modulation instability [52, 63]. This higher-order instability arises from the
nonlinear superposition of elementary instabilities, associated with initial single
Akhmediev breather evolution followed by a regime of complex pulse splitting. The
excitation of higher-order MI can be observed readily in experiments using only a
single initial frequency modulation on a plane wave, provided that the modulation
frequency is below a critical low frequency limit such that multiple instability
harmonics fall under the elementary gain curve [64] (i.e., when a > 0:375 or
! < 1). The harmonics actively participate in the evolutionary process since they
are forced by the fundamental unstable mode, and then they grow independently at
an exponential rate to dominate the global dynamics. Consequently, the evolution
dynamics appear to be a complex composition of elementary breathers. Moreover,
in such cases, one cannot extract a well-defined single value of recurrence distance
as previously shown in Fig. 7, and a more complex recurrence is observed. Figure 9
gives some numerical examples of higher-order MI when using non-ideal excitation
of a single AB delivered by an intensity modulator. For a D 0:4, only one
harmonic of the initial excitation is located within the MI gain band (i.e., unstable
mode), which leads to the emergence of two elementary breathers. For a D 0:46,
two harmonics are now unstable, and then we observe a third-order MI evolution
corresponding to the nonlinear superposition of three breathers. Note that the
superposition pattern (i.e., the spatial arrangement) is also sensitive to the initial
modulation amplitude. Furthermore, it is obvious that the evolution dynamics are
also driven by this higher-order instability when multiple sidebands are already
present in the initial perturbation, which can be interpreted in terms of higher-order
breathers.

Fig. 9 Higher-order modulation instability induced by non-ideal excitation of ABs (NLSE simu-
lations). (a) MI gain b curve predicted by the linear stability. Solid lines indicate the perturbation
frequencies used in subplots (b, c) to excite ABs corresponding to a D 0:4 (blue color) and
a D 0:46 (red color), respectively. Dashed lines indicate their corresponding harmonics that lie
within the unstable region. (b, c) Intensity evolution for initial periodic modulation of the cw with
a frequency calculated from a D 0:4 and 0:46, respectively. In both cases the initial condition is
 D p

1C 0:15 cos.!�/
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Another important issue of breather generation is the detrimental effect of linear
losses occurring during propagation in optical fibres. An overview of the impact
of fibre losses is given in the next section. It can be simply predicted based on
the dimensional NLSE simulations taking into account a simple dissipative term in
the form of C{˛U=2 (in the left-hand side of Eq. (6)) with ˛ > 0 [55]. Besides
fibre losses, higher order effects linked to pulse propagation such as third-order
dispersion, self-steepening, and the Raman effect can also be considered, even
theoretically by extending the NLSE [65]. Rogue wave solutions were found in such
equations that are integrable in special cases, such as the Sasa-Satsuma or the Hirota
equations [66]. In summary, any kind of disturbance of the ideal NLSE propagation
induces a deviation from the expected theoretical solutions (specific to each breather
on finite background), but most of features related to their pulsating dynamics
remain clearly observable. Breathers on finite background may be considered as
‘robust solutions’ (but unstable solutions from the mathematical point of view) [65],
in the sense that they can be excited or propagated even with non-ideal conditions,
and the main features of a localized high amplitude event (i.e., rogue wave) still
occur.

4 Experimental Results

The first quantitative experimental evidence of breathers on finite background dates
from 2010 with both temporal and spectral analyses [5]. It is worth mentioning
that former works qualitatively found the MI-induced formation of pulse trains in
optical fibres that are potentially described by the usual breather solutions. Indeed,
the ability to generate high-repetition-rate pulse trains through coherent-driven MI
in optical fibres was already studied in the 1980s [67, 68]. However, until recently,
most of these experiments focused on specific initial conditions leading to soliton
trains without background, the latter are more suitable for telecommunications
applications (this corresponds to 0:1 < a < 0:25, but strongly modulated initial
cw was typically used, i.e. a bichromatic pumping). The design of experimental
setups was based on numerical simulations or empirical laws, all this may explain
why the general breather solution was not used. Note that one of the main signature
of breather dynamics was reported in 2001 without comparison to theoretical
solutions, it concerns the growth-decay cycle of the seeded-MI regime that can
be linked to the FPU recurrence phenomenon [39]. In the following, we review
the quantitative experimental demonstrations of the different classes of breather
solutions. We also point out the impact of non-ideal initial excitation and fibre
losses on breather dynamics. Experimental results are compared with corresponding
theoretical predictions from breather solutions. Numerical simulations based on the
NLSE with experimental initial conditions and/or fibre losses are not shown, since
they are usually indistinguishable from experimental results.
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4.1 First-Order Breathers

In 2010, we used the analytic description of NLSE breather propagation to
implement experiments in optical fibre generating femtosecond pulses with strong
temporal and spatial localization, and near-ideal temporal Peregrine breather (PB)
characteristics. These experiments represent the first amplitude and phase measure-
ments of a nonlinear breather structure in any continuous NLSE soliton-supporting
system. The experimental setup was based on the beating of two lasers (see Fig. 6a)
to induce a simple sinusoidal perturbation in the temporal domain whose both
amplitude and frequency can be controlled. This technique simply allows to excite
the large family of AB solutions by adapting the perturbation frequency and the
input power as a function of the fibre characteristics to control the governing
parameter a. The evolution towards the Peregrine breather as a ! 1=2 corresponds
to the limit where ! ! 0 is then accessible by decreasing the frequency space
between lasers. They reached the divergent regime where near-PB characteristics
are observed with the values of a > 0:4. A highly nonlinear fibre was used
to reduce both fibre length and input power required to observe the Peregrine
breather. Detailed temporal measurements using FROG were carried out at the
distance where PB features are expected at maximum compression. The retrieved
intensity and phase are shown in Fig. 10a. The FROG measurements confirm the
expected temporally localized peak surrounded by a non-zero background, and the
different signs of the peak and background amplitudes through the measured relative
� phase difference in the vicinity of the intensity null. The measured spectral
intensity was compared to the analytic spectrum for the ideal PB, the decay of
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Fig. 10 Experimental results showing the measured temporal characteristics of the maximally
compressed breather, and comparison with the predicted Peregrine breather solution. (a) Intensity
and phase from experiment (blue dots) and for the ideal PB (black lines). The maximum peak
power from theory is 9P0 D 2:7W. (b) Corresponding spectral characteristics from experiment
(blue dots) and PB theory (black lines). Note that the theoretical spectrum is calculated for the
time-varying envelope component so that the delta-function component at the pump is not shown.
(Adapted from [5])
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the measured sideband intensities is well reproduced (see Fig. 10b), as follows:
expŒ�j˝j.jˇ2j=�P0/1=2�.

In this work, spatial localization dynamics were studied indirectly by changing
the pump-signal detuning to vary a while studying dynamical evolution by varying
the input power (recall � D z�P0). Later, in 2011, we further explored the generation
of the PB characteristics in the standard fibre SMF-28, using a much simplified setup
[52]. This setup is based exclusively on commercially available telecommunication-
ready components and standard silica SMF-28 fibre. The initially modulated cw
is created through direct intensity modulation of a laser diode and the temporal
characterization is easily obtained by means of an ultrafast optical sampling
oscilloscope. Higher values of a were reached and with cutback measurements,
the first direct observation of PB longitudinal evolution dynamics was reported. In
showing that Peregrine breather characteristics appear with initial conditions that do
not correspond to the mathematical ideal, such results widely impacted on studies
of rogue events induced by modulation instability.

When studying the family of Akhmediev breathers with 0 < a < 0:5, increased
temporal localization is also associated with increasing spatial localization. The
modulation-instability recurrence period increases asymptotically as a ! 1=2.
Two-dimensional localization dynamics were experimentally investigated in [5]
in order to find the regime where the AB approaches the Peregrine limit, even
with non-ideal excitation. Based on extensive autocorrelation measurements, the
degree of spatio-temporal localization was retrieved in good agreement with NLSE
simulations for a large range of a values.

The exact theory describing the frequency domain evolution of ABs can be also
verified. Experiments measuring pump and multiple sideband generation over a
growth-return cycle of MI were performed in 2011 to quantitatively test the theory
for an arbitrary value of a (i.e., for arbitrary gain) [36]. The setup is similar to the
simplified configuration used to observe the PB dynamics. The excellent signal to
noise ratio allowed to compare experiment and theory out to more than ten spectral
sidebands and over a 30 dB dynamic range, as shown in Fig. 11. This was the
most complete and highest signal of noise characterization of MI dynamics in any
NLSE-governed system. We clearly observe the good agreement about the depletion
dynamics of the injected modulated continuous wave pump and the near-recovery
towards the initial state. This detailed analysis reveals that the temporal compression
is associated with an increased spatial localization of the energy transfer to higher
sideband orders. These results also confirm the validity of AB theory in describing
the dynamical evolution from growth to decay over an MI cycle. Note that imperfect
initial conditions of AB excitation and fibre losses here deviate the dynamics from
the perfect recurrence.

Kuznetsov-Ma breathers that are periodic in space were studied experimentally in
2012 [51]. This work reported the first experimental confirmation of the pioneering
theoretical studies of the KMB solution of the NLSE. The experimental configura-
tion is similar to AB studies with the direct modulation of a single cw laser. This
simple setup only generates non-ideal excitation of KMB, however, it was confirmed
that seeding the modulation instability process with strong modulation amplitude
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profiles for maximum temporal compression in time and frequency domains, respectively. Note
that the theoretical spectrum is calculated for the time-varying envelope component so that the
delta-function component at the pump is not shown. (c) Evolution of the maximal power (i.e., at
� D 0) as a function of normalised distance for both experiment (blue circles) and theory (black
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allows the observation of KM dynamics, as previously shown in Fig. 8. One cycle
of the initial periodic modulation approximates the ideal KMB solution at a point
of minimal intensity in its evolution. The evolving temporal profile was measured
with propagation distance by means of fibre cutback experiments. Figure 12 shows
the direct comparison between the generated temporal profile (at half the KMB
period, Lp=2) and the longitudinal evolution of the power (at the centre of the
modulation cycle), and the KMB theory. The agreement between experiment and
theory confirms that KM solutions describes the evolution of individual modulation
cycles. KMB dynamics then appear more universally than for the specific conditions
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considered in the original theory. The experimental analysis of the longitudinal
periodic behaviour was limited to one growth-decay cycle due to detrimental fibre
losses.

Note that AB and KMB dynamics were recently studied with exact initial condi-
tions in water waves. The experiments conducted in a water wave flume showed
results that are in good agreement with theoretical predictions, thus confirming
that such breather solutions can explain the generation of extreme waves in diverse
nonlinear dispersive media [69].

4.2 Higher-Order Breathers

The experimental generation of higher-order breather dynamics can be classified in
two categories that depend on breather excitation. The first one relies on a single-
frequency non-ideal perturbation [52, 63], whereas the second category includes the
simultaneous seeding of modulation instability by multiple frequencies [53, 54].

Figure 13 reports the nonlinear superposition of two or three first-order breathers,
observed when a single breather (for a > 0:375) is excited with non-ideal
perturbation. The experimental setup was based on the direct cosine modulation of
a cw laser to excite an AB with parameter a D 0:42 or 0:464 close to the Peregrine
regime. The initial evolution is only driven by the excited unstable mode, but next
impacted by the second and third unstable modes with frequencies corresponding
to the harmonics of initial excitation. The generated pattern in the plane (t,z) looks
like a complex pulse splitting, its was explained in terms of higher-order MI since
the multiple instability harmonics fall under the MI gain curve (see similar pattern
in Fig. 9). The expected return to the initial state for an ideal AB is not observed.
Corresponding theoretical predictions can be easily retrieved by using second or
third-order breather solutions with a suitable choice of shifted variables �sj and �sj
(see Fig. 5).

Fig. 13 Experimental measurements of spatio-temporal evolution of modulated cw undergoing
higher-order MI for a D 0:42 (a) and a D 0:464 (b). (Adapted from [52, 63])
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To describe giant-intensity waves, we have to consider the synchronized inter-
action of first-order breathers that correspond to their collision, i.e. higher-order
breather solutions with shifted variables equal to zero. This requires a multiple-
sideband perturbation of the continuous wave. The collision of two ABs was
experimentally studied in 2013 with non-ideal excitation of the two breathers
[53]. An efficient collision occurs during propagation with proper initial phase and
velocity differences between breathers. The easiest way to generate two ABs was the
seeding of MI process at two distinct frequencies with only two spectral sidebands.
The initial cw then contains a bimodulation in the temporal domain. By controlling
the initial asymmetry of the sideband amplitudes, their relative phase difference,
and their relative frequency spacing from the pump (with opposite sign to favor
the collision), we can find specific conditions where the two ABs collide efficiently
at a specific distance. Corresponding numerical simulations (without fibre losses)
are shown in Fig. 14a–c to illustrate the overall dynamics. These spatio-temporal
dynamics are very well described by higher-order breather theory. In this work, such
a control of spectral sidebands was created through the spectral shaping of three
optical comb lines, i.e. the pump and two sidebands (see Fig. 6). The experimental
observation of the giant wave profile generated at the predicted collision distance is
reported in Fig. 14d. Obviously, when one of the initial sidebands was switched off,

Fig. 14 NLSE simulations: single breather evolution with nonideal excitation (a) for a1 D 0:14

and (b) for a2 D 0:34. (c) Collision of the two ABs when excited simultaneously by using the
superposition of previous initial conditions. (d) Experimental collision (blue dots) profile compared
to ideal theory (black curve) and NLSE simulations with non-ideal excitation (red dashed line) by
using normalized variables. (Adapted from [53])
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the evolution of a single breather was recovered with a lower peak power. Besides
the presence of secondary side lobes attributed to non-ideal excitation of ABs, the
main discrepancy with the ideal second-order breather solution is the maximal peak
power that can be reached. A better agreement would be conceivable if one could
excite the collision on a shorter propagation distance (here 3.8 km) to minimize the
impact of fibre losses.

Later, the experimental demonstration of exact higher-order breather generation
was reported by combining this programmable pulse shaping technique (to shape
the exact initial excitation) with short propagation sequences for reconstructing
the full wave evolution (to overcome the fibre loss issue) [54]. This two-stage
linear-nonlinear shaping of an optical frequency comb can be now considered as
an optical rogue-wave-solution generator. As an example, the explicit analytical
form of a synchronized two-breather solution of the NLSE was applied as a linear
spectral filter to shape ideal modulation of a continuous wave. Relative amplitude
and phase differences of 25 comb lines were managed. The additional nonlinear
propagation of the tailored wave provided the first complete experimental evidence
of both the growth and decay of this kind of fundamental breather solution in
excellent agreement with theory, as reported in Fig. 15. A misfit parameter between
the experimental shape and theory was calculated and found to be below 4 %, only
due to the residual fibre losses.

Fig. 15 Evolution of a second-order periodic breather in both temporal and spectral domains,
respectively, as a function of propagation distance. (a, b) Experiments. (c, d) Analytic solution
given by Eq. (5) for a1 D 0:2294 and a2 D 0:4323. (Adapted from [54])
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5 Conclusions

This chapter presented the main features of simplest breather solutions of the NLSE.
Breathers are of fundamental importance since they contribute to fully describe
the growth-decay cycle of extreme localized waves emerging from modulation
instability. We described the usual conditions required for their observation in
optical fibres, and we reported the first complete experimental proofs of existence
and control of this untested class of nonlinear waves. However, our investigations
were restricted so far to an essentially reduced class of breathers and in the
absence of complex dynamics. To go beyond the frontier in terms of exploring
the rich dynamics of breathers, current issues mainly rely on the development of
ultrafast optical arbitrary wave generation and characterization, and the design of
more complex optical systems without loss (i.e., multi-variable and inhomogeneous
propagation, as well as wave turbulence and perturbed NLSE-based systems). In this
context, a recent work investigated the dynamics of ABs in an optical fibre with a
longitudinally tailored dispersion that allows to nearly freeze the breather evolution
near their point of maximal compression [70]. Furthermore, the existence of vector
rogue wave solutions arising from polarization modulation instability is expected
to be a crucial progress in explaining extreme waves in multicomponent systems
[71–73].

Finally, the widest class of creation and annihilation dynamics of MI, also called
superregular breathers, was recently and simultaneously observed in two different
branches of wave physics, namely, in optics and hydrodynamics [74]. Based on the
common framework of the nonlinear Schrödinger equation, this multidisciplinary
approach proved the universality and reversibility of nonlinear wave formations
from localized perturbations for drastically different spatial and temporal scales. In
summary, the direct analogy drawn within the narrowband approximation of NLS
model between ocean waves and light wave propagation in optical fibres [75], or
even with other physical domains such as plasma physics, makes this research area
very challenging and exciting for both fundamental and applied aspects.
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Hamiltonian Description of Ocean Waves
and Freak Waves

Peter A.E.M. Janssen

Abstract Freak wave generation and decay is discussed in the context of the
Hamiltonian description of ocean waves. In linear theory the probability distribution
function (p.d.f.) of the surface elevation is given by the Normal distribution, while
for finite amplitude waves there are, for extreme events, always deviations from the
Normal, giving finite skewness and excess kurtosis. These deviations are caused
by the presence of the bound waves and, in case of almost one-dimensional
propagation, by non-resonant four-wave interactions.

1 Introduction

This lecture consists of two parts. In the first part we choose as starting point
the Hamiltonian formulation of the dynamics of surface gravity waves. Using a
canonical transformation there is a natural distinction between free waves and bound
waves. The dynamics of the free waves follows from the well-known Zakharov
equation, which in essence describes four-wave interactions, while the bound waves
are a function of the free waves and are therefore regarded as ‘slaves’. A number of
properties of the Zakharov equation related to the stability of a uniform wave train
will be discussed.

In the second part we discuss wave forecasting aspects. Wave forecasting is
about forecasting the mean sea state, as reflected by the ocean wave spectrum,
and therefore we need a statistical description of the sea state culminating in
an evolution equation for the ensemble mean of the sea state, the well-known
Hasselmann equation which describes the evolution of the wave spectrum owing
to resonant four-wave interactions only.

However, for freak wave phenomena, which are sea states that are very rapidly
varying in time, we also need to take into account the effects of non-resonant
interactions. The resulting equation is a slight extension of the Hasselmann
equation, and it will be shown how in the context of this statistical approach freak
waves emerge and disappear. The role of the bound waves will be discussed as well.
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The programme of these lectures is therefore as follows: The lectures start with a
brief history of the field of surface gravity waves. This is followed by a study of the
ocean wave problem in the context of its Hamiltonian formulation. In particular,
a discussion is given of the assumption of weak nonlinearity, giving a natural
distinction between free and bound gravity waves. The approximate evolution
equation, called the Zakharov Equation, is derived, followed by a discussion of
four-wave interactions and the stability of a Stokes wave train. The evolution of
the wave spectrum is obtained using a method from Statistical Mechanics, and it
shows the strong relation between spectral change and deviations from Gaussian
statistics. This approach allows the probabilistic forecasting of extreme events. As
a special case the evolution of a narrow band wave train is studied and we show the
connection between the Zakharov equation and the Nonlinear Schrödinger (NLS)
Equation. There is a sharp contrast between one and two-dimensional propagation.
While in one dimension the NLS equation gives for large times envelope solitons,
signalling the presence of extreme events, in two-dimensions envelope solitons are
unstable and extreme events are much more unlikely to occur. Finally, for practical
applications the concept of maximum envelope wave height is introduced which
provides an adequate means to characterize extreme events such as freak waves.

A more detailed discussion of the Hamiltonian formulation of water waves may
be found in [1, 2], while the relation between freak wave generation and non-
resonant four-wave interactions is studied in much more detail in [3]

2 The Problem

Assume irrotational flow, r � u D 0, which gives velocity field u in terms of a
velocity potential �,

u D r�:
Because of the constant water density the flow is divergence free, i.e. r � u D 0,
hence inside the fluid the velocity potential satisfies Laplace’s equation,

r2� D 0:

The main problem for water waves is, however, with the boundary conditions at the
surface, described by z D �.x; t/. First of all, the surface evolves in space and time,

@�=@t C @�=@x � @�=@x D w D @�=@z at z D �:

The boundary condition at the surface then becomes the vanishing of the water
pressure, where for potential flow the water pressure follows Bernoulli’s law,

@�=@t C 1

2
.r�/2 C g� D 0; at z D �:

Finally, in finite depth water, the normal velocity vanishes at z D �D.
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3 Brief History

The history of ocean waves really started in the early part of the nineteenth century.
In 1816 Poisson and Cauchy presented the solution of the linear, initial value
problem. This was followed by Stokes [4] in 1847 who gave for a single deep-water
wave train a series expansion in amplitude of the type

� D a cos � C 1
2
a� cos 2� C � � �

with slope � D ka, � D kx � !t and ! obeys the nonlinear dispersion relation
! D !0.1 C �2=2/. In 1895 Korteweg-de Vries [5] provided for shallow water
solitary wave solutions of permanent shape, explaining Scott Russell’s observations.
These solitary waves were obtained from the KdV equation

ut C uux D uxxx

and in the 1960s it was shown by means of the Inverse Scattering Transform (IST)
that these solitary waves were stable entities, henceforth called solitons. For a while
it was fairly quiet at the water wave front until Sverdrup and Munck [6], stimulated
by the practical need for sea state information for landing operations during the
second world war, developed a first ocean wave forecasting method. This was
followed in the 1960s by Whitham’s [7] work on the Variational approach, which
provided a generalization of the concept of dispersion towards weakly nonlinear
systems, and he introduced the deterministic version of the action balance equation.
At about the same time Phillips [8] discovered that deep-water surface gravity waves
were subject to four-wave interactions, since there were no resonant three wave
interactions, while Hasselmann [9] established and formulated the corresponding
evolution for the wave spectrum using methods from Statistical Mechanics. In
1967 Bejamin and Feir [10] found experimentally and theoretically that the Stokes
wave train was unstable to side-band perturbations, which later was realized to
be an example of a four-wave interaction process. Finally in 1968 Zakharov [11]
discovered that irrotational water waves are a Hamiltonian system, and that in the
narrow-band limit the envelope obeys the nonlinear Schrödinger (NLS) equation, an
equation that was found in many other nonlinear fields of physics as well. Although
the NLS equation represents a fairly simple situation, it helped to provide a unified
view on the field of nonlinear waves.

4 Hamiltonian Formulation

The total energy of the fluid is given by

E D 1

2

Z
dx
Z �

�D0

dz.r�/2 C g

2

Z
dx �2: (1)
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and this is a conserved quantity. By choosing � and  D �.z D �/ as
canonical variables, Zakharov [11] realized that the kinematic boundary condition
and Bernoulli’s equation then follow from the Hamilton equations,

@�

@t
D ıE

ı 
;
@ 

@t
D �ıE

ı�
; (2)

where ıE=ı is the functional derivative of E with respect to  D �.z D �/, etc.
Inside the fluid the potential � satisfies Laplace’s equation,

r2� D 0 (3)

with boundary conditions

�.x; z D �/ D  ; (4)

and, with D0 the water depth,

@�.x; z/
@z

D 0; z D �D0: (5)

By solving the potential problem, � may be expressed in terms of the canonical
variables � and  . Then the energy E may be evaluated in terms of the canonical
variables, and the evolution in time of � and  follows at once from Hamilton’s
equations [Eq. (2)]. In particular for small steepness � the potential problem (3)–(5)
may be solved in an iterative fashion, as Eq. (4) is a nonlinear equation.

Introduce the Fourier transforms of � and  , for example

� D
Z 1

�1
dk O�.k/eik:x (6)

where O� and O are the Fourier transforms of � and  . Here, k is the wavenumber
vector, and k its absolute value. In order to proceed, introduce the linear dispersion
relation for surface gravity waves

!2 D gkT0; T0 D tanh kD0: (7)

Next, anticipating the fact that we have two oscillation modes, introduce the
following relation between the Fourier transform of � and  and the action density
variable A.k; t/

O� D
�
!

2g

�1=2 �
A.k/C A�.�k/

	
; O D �i

� g

2!

�1=2 �
A.k/� A�.�k/

	
: (8)
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In terms of the action variable the energy of the fluid is given by a series
expansion which up to fourth order in amplitude involves quadratic (linear theory),
cubic and quartic terms. It should now be realized that surface gravity waves do not
enjoy resonant three wave interactions. For example, the resonance conditions of the
type k1Ck2 D k3 and!1C!2 D !3 cannot be satisfied when the dispersion relation
is given by the one for gravity waves. A simple graphical construction shows this.

Therefore, there is a canonical transformation of the type

A D A.a; a�/ (9)

which removes the non-resonant third and fourth order terms as much as possible.
Here, a is the amplitude of the free waves, while the canonical transformation
generates the contributions by bound waves (i.e. second harmonics).

In terms of the action variable the energy of the fluid becomes to fourth order in
amplitude

E D
Z

dk1!1A1A�
1 C

Z
dk1;2;3ı1�2�3V.�/1;2;3

�
A�
1A2A3 C c:c:

�

C 1
3

Z
dk1;2;3ı1C2C3V.C/1;2;3 ŒA1A2A3 C c:c:�

C
Z

dk1;2;3;4ı1�2�3�4W.1/
1;2;3;4

�
A�
1A2A3A4 C c:c:

�
(10)

C 1
2

Z
dk1;2;3;4ı1C2�3�4W.2/

1;2;3;4A
�
1A

�
2A3A4

C 1
4

Z
dk1;2;3;4ı1C2C3C4W.4/

1;2;3;4

�
A�
1A

�
2A

�
3A

�
4 C c:c

�

Here, V./ and W./ are complicated expressions of ! and k which are given by
Krasitskii [12].

The evolution equation for A now follows from Hamilton’s equation @A=@t D
�iıE=ıA�, and evaluation of the functional derivative of the full expression for E
with respect to A� gives,

@

@t
A1 C i!1A1 D �i

Z
dk2;3

n
V.�/1;2;3A2A3ı1�2�3 C 2V.�/3;2;1A

�
2A3ı1C2�3

CV.C/1;2;3A
�
2A

�
3 ı1C2C3

o
� i

Z
dk2;3;4

n
W.1/
1;2;3;4A2A3A4ı1�2�3�4

CW.2/
1;2;3;4A

�
2A3A4ı1C2�3�4 C 3W.1/

4;3;2;1A
�
2A

�
3A4ı1C2C3�4

CW.4/
1;2;3;4A

�
2A

�
3A

�
4 ı1C2C3C4

o
: (11)
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Equation (11) is the basic evolution equation of weakly nonlinear gravity waves and
it includes the relevant amplitude effects up to third order. A great simplification of
the expression for the energy is achieved by introducing the canonical transforma-
tion (9) that eliminates the contribution of the non-resonant second and third order
terms as much as possible.

The first few terms are given by

A1 D a1 C
Z

dk2;3
n
A.1/1;2;3a2a3ı1�2�3 C A.2/1;2;3a

�
2a3ı1C2�3

CA.3/1;2;3a
�
2a

�
3 ı1C2C3

o
C
Z

dk2;3;4
n
B.1/1;2;3;4a2a3a4ı1�2�3�4 (12)

CB.2/1;2;3;4a
�
2a3a4ı1C2�3�4 C B.3/1;2;3;4a

�
2a

�
3a4ı1C2C3�4

CB.4/1;2;3;4a
�
2a

�
3a

�
4 ı1C2C3C4

o
: : : :

The unknownsA./ and B./ are obtained by systematically removing the non-resonant
third- and fourth-order contributions to the wave energy, and insisting that the form
of the expression for the energy remains symmetric. These expressions are quite
involved and have been given in [12, 13] and [2] for example. Here, we only give
the transfer coefficient for the quadratic terms explicitly.

They read

A.1/1;2;3 D � V.�/1;2;3

!1 � !2 � !3
; A.2/1;2;3 D �2 V.�/3;2;1

!1 C !2 � !3
; A.3/1;2;3 D � V.C/1;2;3

!1 C !2 C !3

and they show that in the absence of resonant three wave interactions the transfor-
mation A D A.a; a�/ is indeed nonsingular. Elimination of the variable A in favour
of the new action variable a results in a great simplification of the wave energy E
(10). It becomes

E D
Z

dk1!1a�
1a1 C 1

2

Z
dk1;2;3;4T1;2;3;4a�

1a
�
2a3a4ı1C2�3�4; (13)

where the interaction coefficient T1;2;3;4 is given by Krasitskii [12, 13]. The
interaction coefficient enjoys a number of symmetry conditions, of which the
most important one is T1;2;3;4 D T3;4;1;2, because this condition implies that E is
conserved. In terms of the new action variable a, Hamilton’s equation becomes
@a=@t D �iıE=ıa�, or,

@a1
@t

C i!1a1 D �i
Z

dk2;3;4T1;2;3;4a�
2a3a4ı1C2�3�4; (14)
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k2
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k4

Fig. 1 Phillips’ figure of eight: the graph shows how to construct a resonant quartet of surface
gravity waves

which is known as the Zakharov Equation. Clearly, by removing the non-resonant
terms, a considerable simplification of the evolution equation describing four-wave
processes has been achieved.

The starting point for wave forecasting is the Zakharov equation, which gives the
evolution of the free waves only. Hence, our wave forecasting system only gives the
spectrum for the free waves, but this is not the complete sea state because we still
have to consider the consequences of the canonical transformation. This will give
rise to bound waves, also known as ‘slave modes’, and they may be obtained by
means of a diagnostic relation from the knowledge of the free wave spectrum.

The Zakharov Equation is an evolution equation that describes four-wave inter-
actions. Note that the resonant four-wave interactions: k1Ck2 D k3Ck4; !1C!2 D
!3 C !4 play a special role in the evolution of surface gravity waves because these
interactions give rise to an efficient resonant energy transfer. Phillips [8] has shown
that for gravity waves these resonance conditions can be satisfied, while at the
same time he showed that resonant three wave interactions are impossible. These
solutions are obtained using Phillips’ figure of eight, as illustrated in Fig. 1.

Many properties of the Zakharov equation have been studied in the past. Here,
only results regarding the instability of the Stokes solution will be presented.

5 The Instability of Finite-Amplitude Deep-Water Waves

A finite amplitude wave has a dispersion relation which depends on the amplitude.
This follows immediately from the Zakharov equation. Consider the case of a single
wave, e.g.

a.k/ D Oa.t/e�i!t ı.k � k0/ (15)
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Then, substitution of (15) into (14) gives

@

@t
Oa D �iT0jOaj2 Oa; (16)

where it may be verified that T0 D T0;0;0;0 D k30. Equation (16) may be solved at
once by writing

Oa D a0e
�i˝t

where ˝ denotes the correction of the dispersion relation due to nonlinearity. It is
given by

˝ D T0ja0j2 (17)

Therefore, the dispersion relation of a weakly nonlinear gravity wave is given by

! D !0.1C 1
2
s2/; !0 D

p
gjk0j; (18)

and s is the wave steepness, defined as wavenumber times surface elevation
amplitude, hence wave steepness is related to the action density variable in the
following way: s D k0a0

p
2k0=!0. The result (18) was obtained in [4] using a

singular perturbation method.
The dependence of the dispersion relation on the wave steepness will have a

profound impact on the time evolution of a weakly nonlinear wave train. This will
be discussed in the next section, but let us first discuss the short time behaviour of a
nonlinear wave train by means of a linear stability analysis.

To test the stability of a uniform wave train we perturb it by a pair of sidebands
with wavenumber k˙ D k0 ˙ K and amplitude A˙.t/, e.g.,

a D fA0ı.k � k0/C ACı.k � kC/C A�ı.k � k�/g e�i!.k/t:

Assuming that the sideband amplitudes are small compared to the amplitude A0
of the carrier wave and neglecting the square of small quantities, the following
evolution equations for A˙ are found from the Zakharov equation (15),

i
d

dt
A˙ D T˙;�a20A

�� expŒ�i.�! C 2T0a
2
0/t�C 2T˙;˙a20A˙ (19)

where

T˙;˙ D T.k0 ˙ K; k0; k0; k0 ˙ K/

T˙;� D T.k0 ˙ K; k0 	 K; k0; k0/

T0 D T.k0; k0; k0; k0/

�! D 2!.k0/� !.k0 C K/� !.k0 � K/

and a0 D A0.
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By means of the substitution

AC D OAC expŒ�i. 1
2
�! C T0a

2
0/t � i˝t�;

A�� D OA�� expŒCi. 1
2
�! C T0a

2
0/t � i˝t�;

where˝ is still unknown, a set of differential equations is obtained that contains no
explicit time dependence. A nontrivial solution is then found provided ˝ satisfies
the dispersion relation

˝ D .TC;C � T�;�/a20

˙
n
�TC;�T�;Ca40 C �� 1

2
�! C a20.TC;C C T�;� � T0/

�2o 12
(20)

We have instability provided that the term under the square root is negative. This
result, including the discussion that follows, is due to Crawford et al. [14] (see also
[15, 16]).

A considerable simplification of the dispersion relation is found when close
sidebands are considered. One then introduces the dimensionless perturbation
wavenumber

� D K=k0 (21)

and one considers � � 1. The frequency mismatch is then approximately given by

�! ' 1
4
!0�

2:

Expanding then the expressions for T in powers of � and retaining only terms
quadratic in the steepness s and modulation wavenumber �, one finds

˝ D !0

�
��

2

8
s2 C �4

64

� 1
2

: (22)

This is the classical result of Benjamin and Feir [10]. Instability is found for
sufficiently steep waves:

�2 � 8s2: (23)

In Fig. 2 the normalized growth rate =.˝/=1
2
!0s2, obtained from Eq. (20), is

plotted as function of the normalized sideband wave number � D �=2s. Here, we
have used the wave steepness s as a label and the results of Benjamin and Feir
corresponds to the limit s ! 0. Note that

1. small but finite amplitude gives considerable deviations from their classical
result.

2. very long waves .� ! 0/ become stable again for a steepness s which is
larger than 0:39. This restabilization of the very long waves is in qualitative
agreement with results from Whitham’s average Lagrangian approach which
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Fig. 2 Two-dimensional instability growth rates as a function of perturbation wavenumber for
various values of wave steepness. The Benjamin-Feir result is recovered by taking the limit as
wave steepness approaches zero
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Fig. 3 Stability diagram for two-dimensional perturbations on a uniform wave train from the
Zakharov equation and comparison with results from [17]

yields restabilization for s D 0:34. The quantitative discrepancy of only 14%
is better than expected since the present theory is formally accurate to O.s2/.

3. there is restabilization for all modulation wavenumbers for sufficiently large
steepness (s ' 0:5). This property is in qualitative agreement with numerical
results in [17]. This is shown more clearly in Fig. 3 where the marginal stability
boundary is plotted in the � � s plane.

The agreement of the results from the Zakharov equation and experiment is also
very encouraging. This is shown in Fig. 4 where normalized growth rate as function
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Fig. 4 Comparison of
calculated instability growth
rate with experimental results
as a function of wave
steepness for two values of
perturbation wavenumber.
Symbols: (open
circle)W � D 0:4, (filled
circle)W � D 0:2 [18]; (open
triangle): data from [19]
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of wave steepness is presented. The experimental results are from [18, 19]. For
reference, also the theoretical result of Benjamin and Feir (22) is shown.

To summarize, we have seen that a weakly nonlinear wave train is unstable
to sideband perturbations. An energy transfer occurs from the basic wave to the
sidebands through a four-wave interaction process. The results from the Zakharov
equation compare favourable with exact computations and experiment. This the-
oretical approach has a surprisingly large range of validity, considering that it is
formally only valid up to O.s2/.

The present discussion so far was confined to the case of sidebands that propagate
in the same direction as the basic wave (1-D modulations). The present theory is also
applicable to two dimensional modulations. Let the basic wave propagate in the x-
direction and let

�x D �x=2s; �y D �y=2s;

where �x D Kx=k0 and �y D Ky=k0 are the x- and y-component of the normalized
sideband wavenumber vector. Returning to Eq. (20) we again expand the frequency
mismatch�! for very long modulation wavelength

�! D 1

4
!0�

2
x � 1

2
!0�

2
y :

Also, expanding T and retaining terms to O.s2/ and O.j�j2/ one finds from (20)

˝ D
�

�1
2
�!s2!0 C 1

4
.�!/2

�1=2
: (24)

The stability boundary is then defined by the curves �! D 0 and �! D 2s2!0 and
they are sketched in the �x; �y plane in Fig. 5.
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Fig. 5 Three-dimensional stability boundary from Zakharov equation in strained coordinates �x

and �y. Continuous line, k0a0 D 0:01; crossed line, k0a0 D 0:1; dashed dotted line, k0a0 D 0:4;
dotted line, k0a0 D 0:48

5.1 Narrow-Band Wave Train in 1D

In the discussion on the results of the Zakharov Equation I have introduced the idea
of a narrow-band wave train. This is a very useful concept for further understanding
of the Benjamin-Feir instability. Consider a narrow spectrum around a carrier wave
number k0. This simplifies the Zakharov Equation. Introducing the modulation wave
number p D k � k0 angular frequency is expanded around the carrier wavenumber

!.k/ D !0 C p!0
0 C 1

2
p2!00

0 C : : : I T1;2;3;4 ! k30

and this is used in the Zakharov Equation. After an inverse Fourier-transform one
finds the celebrated Nonlinear Schrödinger Equation (NLS)

i

�
@

@t
C !0

0

@

@x

�
a C 1

2
!00
0

@2

@x2
a � 1

2
!0k

2
0jaj2a D 0;

which may be further simplified by going to a frame moving with the group velocity
and by introduction of dimensionless units:

i
@

@t
a � @2

@x2
a � �jaj2a D 0: (25)

This evolution equation for the complex amplitude (wave envelope) occurs in many
branches of physics and has generated a lot of interest. There are two important
cases:

1. Focusing: � > 0, this happens for deep water waves.
2. Defocusing: � < 0, occurs for shallow water waves .k0D < 1:363/.
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5.2 Properties of 1D NLS

Here we list some interesting properties of the NLS equation, an equation that has
been found in many fields of (nonlinear) physics.

1. Initial value problem in 1-D can be solved exactly by means of IST. Solution in
terms of solitons and radiation modes [20].

2. Benjamin-Feir Instability, also called modulational instability or side-band insta-
bility. There is instability of the Stokes wave train when sidebands are close to
the peak: p2 < 2�a20. (only in deep water!).

3. Long term evolution of the Benjamin-Feir instability shows Fermi-Pasta-Ulam
recurrence (See Fig. 6).

a)

b)

c)

d)

e)

f)

Fig. 6 The Benjamin-Feir Instability, which is the instability of a slowly varying weakly nonlinear
wave train, shows Fermi-Pasta-Ulam recurrence (from [18])
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5.3 NLS and Fermi-Pasta-Ulam Recurrence

Indeed, numerical solution of the NLS equation showed a perfect recurrence of
the Benjamin-Feir instability. This recurrence was also found by means of an
approximate solution of the NLS equation in the limit of small growth rate.

In Fig. 7 it is shown that there is a threshold for instability. Therefore, the
magnitude of the growth rate may be controlled. If the distance� to the threshold is
not too large, i.e. � � 1, application of the method of multiple time scales results
in the following evolution equation for the amplitude � of the unstable sideband
[21]

d2

dt2
� D �2� � ˇ2j� j2�; (26)

where � is the growth rate according to linear theory and ˇ measures the strength
of nonlinearity.

Equation (26) has periodic solutions in time since the evolution equation is just
equivalent to the motion of a particle in a potential well V , displayed in the right
part of Fig. 7. From (26) one finds the conservation law

1
2

ˇ̌
ˇ̌d�

dt

ˇ̌
ˇ̌2 C V .� / D const

where the potential is given by

V .� / D � 1
2
�2j� j2 C 1

4
ˇ2j� j4:

It is evident from Fig. 7 and the expression for the potential V that for small
amplitude there is instability because then the potential is convex, while for large
amplitude nonlinearity is stabilizing. The evolution of the amplitude � in time and
the corresponding effect of the instability on the amplitude of the carrier wave is
displayed in Fig. 8.

Δ

k/(2k0s) threshold

Im
(Ω

)/
1 /

2ω
0s

2

V(Γ)

Γ

a b

Fig. 7 Left: Growth rate of Benjamin-Feir instability and the definition of the distance � to the
threshold for instability. Right: The potential V .� / as function of the amplitude j� j
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Fig. 8 Benjamin-Feir Instability and the Fermi-Pasta Ulam recurrence. Note the interplay between
carrier wave (a0) and sideband (� )

Clearly, the sideband is growing at the expense of the carrier wave and this is at
the same time the main reason for quenching the energy transfer from the carrier
wave to the sideband.

The existence of the Fermi-Pasta-Ulam recurrence illustrates the fact that
nonlinear systems may have a long memory of the initial condition. The NLS is an
integrable system and there is even Fermi-Pasta-Ulam recurrence when two or more
modes are unstable [22]. However, it should be remarked that the simple picture of
the Fermi-Pasta-Ulam recurrence is, probably, not universally valid, in particular, if
an energy cascade is allowed by the dispersion relation of the waves.

5.4 Narrow-Band Wave Train in 2D

In the case of two-dimensional propagation the NLS equation becomes

i

�
@

@t
C vg

@

@x

�
a C 1

2

 
@2!

@k2x

@2

@x2
C @2!

@k2y

@2

@y2

!
a � 1

2
!0k

2
0jaj2a D 0;

which is the evolution equation for the envelope of a wave train with carrier wave
number k D .k0; 0/with modulations in the x-direction (p) and in the y-direction (q).
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Properties of 2D NLS are:

1. There is Benjamin-Feir Instability, but it has a different character (see stability
diagram in Fig. 5).

2. Envelope solitons are unstable to transverse perturbations [23].

Finally, it is emphasized that the narrow-band approximation resulting in the
two-dimensional NLS equation has a restricted validity. This is clearly evident
because the two-dimensional version of NLS has energy leakage to high modulation
wavenumbers. As a result, after a finite time the wave energy is not confined to a
small region in wavenumber space, therefore violating the original assumptions of
narrow band. From the Zakharov equation we know that the instability region is
finite in extent, however, even for two-dimensional perturbations.

Hence, this suggests that the two-dimensional NLS equation does not provide
an appropriate description of the envelope of surface gravity waves for large
times. Nevertheless, studies of the properties of the NLS equation have been
vital in understanding nonlinear wave-wave interactions and in understanding the
conditions under which freak waves, for example, may occur.

5.5 Nomenclature

Before we discuss the statistical approach to sea state forecasting I would first like
to introduce some relevant concepts.

The sea state is represented by the wave spectrum F D F.k; x; t/. Here k is the
wavenumber vector, such that k D 2�=	 with 	 the wave length. The spectrum is
normalized in such a way that the integral over the spectrum gives, apart from a
factor �wg, the wave energy:

Z
dkF.k/ D E

�wg
; E D �wgh�2i

where � denotes the surface elevation. Thus, spectrum is normalized so that its
integral equals the wave variance h�2i. The variance will frequently be denoted by
m0 where, in general, mn is the nth frequency moment of the spectrum:

mn D
Z

dk !n F.k/

In practice we think in terms of wave heights (for a single wave this the distance
between crest and trough). In a spectral context we use the concept of significant
wave height. This is a statistical measure, defined as

HS D 4
p
m0
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In a similar vein, lots of other variables may be defined using the spectrum,
e.g. mean frequency, mean wave direction, wave steepness, directional width etc.

An example is the ‘significant’ wave steepness � D k0m
1
2

0 , with k0 the peak wave
number, and the relative width of the frequency spectrum ı! D 
!=!0. These two
parameters allow to introduce a measure of coherency of the sea state, as expressed
by the Benjamin-Feir Index

BFI D �
p
2=ı!:

In 2D, an additional parameter is of major interest in the present discussion, namely
the ratio of directional width ı� and frequency width ı! ,

R D 1
2

ı2�
ı2!
:

6 Ocean Waves and Statistical Mechanics

Modern wave forecasting systems predict the average sea state at a certain location,
hence there is no information on phases of the waves available. Using ideas from
non-equilibrium statistical mechanics, deviations from Gaussian statistics can be
related to the mean sea state, as expressed by the wave spectrum. Deviations from
Gaussian statistics imply change of the sea state. This allows us to obtain from the
deterministic Zakharov equation an evolution equation for the wave spectrum that
basically gives the rate of change of the sea state due to four-wave interactions.
In addition, the probability distribution function (p.d.f.) and its deviations from
Normality are now known as well. Hence, for given sea state the probability of
occurrence of extreme events can be obtained.

Here, the assumptions underlying our approach will be given and we are going to
describe the procedure how to obtain the four-wave evolution equation and the p.d.f.
of the sea surface. However, from the previous discussion we know that there is a
distinction between free waves and bound waves. The ‘free’ wave dynamics usually
gets most of the attention, but in order to obtain a complete picture of the sea state,
the contribution of the bound waves to the wave spectrum and to the statistics of the
waves needs to be discussed as well. We first start with the ‘free’ waves which is
followed by a discussion of the consequence of the presence of the bound waves.

6.1 A Generation Mechanism for Freak Waves

Freak waves are examples of extreme, nonlinear ocean waves which may cause
considerable damage to large vessels and oil rigs. An example of a freak wave is
shown in Fig. 9. These extreme waves are generated by a combination of “luck”, i.e.
constructive interference, and nonlinear focussing, a process that also causes the
Benjamin-Feir Instability.
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Fig. 9 An example of an extreme sea state

Most of the time linear waves on the open ocean are independent and therefore
the Random Phase Approximation applies. This means that in a good approximation
ocean waves follow Gaussian statistics. However, nonlinear interactions imply
correlated phases which result in deviations from Gaussian sea state. The kurtosis
(which measures deviations from the Normal distribution) can be expressed in
terms of the wave spectrum, and therefore for given sea state the probability of
occurrence of extreme events can be obtained. Theory is validated against Monte
Carlo Simulations using the Zakharov Equation.

Theoretically it is now straightforward to generate freak waves as four-wave
interactions, under certain conditions (large BFI and small R!), will lead to the
formation of wave groups. However, all this depends in a sensitive manner on the
initial phases of the waves. The dependence on the initial phases of the waves is
illustrated in Fig. 10. Starting from a sea state where all the waves have the same
phase enormous waves are generated in an almost periodic fashion, in fact the
envelope consists of solitons. However, the evolving sea state is less dramatic when
the simulation starts from random initial phase. This emphasizes the need for a
statistical approach as in practice the phases of the waves are not known.

6.2 Stochastic Approach: Free Waves

In wave forecasting we are interested in predicting quantities such as the second
moment

B1;2 D< a1a
�
2 >D O.�2/; � D wave steepness;
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Fig. 10 Focussing of wave energy depends in a sensitive manner on the phase of the waves.
Compare the case with waves having the same phase initially (top) with the random phase case
(bottom). Both cases start from the same wave spectrum

where angle brackets denote an ensemble average. Following methods employed in
Statistical Mechanics (Liouville ! Boltzmann) one obtains from the deterministic
Zakharov equation an equation for the action density N. Two assumptions are made,
namely the p.d.f. of the sea state is close to a Normal distribution, and the sea state
is homogeneous.

Because of nonlinearity the second moment is coupled to fourth moment, giving
an infinite hierarchy of equations. Closure of the hierarchy of equations is achieved
by the assumption that the sea state is close to a Gaussian, because nonlinearity is
assumed to be weak. For example, the fourth moment is given by

< ajaka
�
l a

�
m > D Bj;lBk;m C Bj;mBk;l C Dj;k;l;m;

where D is the so-called fourth cumulant, which vanishes for a Gaussian sea state.
For weakly nonlinear waves D D O.�6/ is small, but finite, and this enables one to
close the hierarchy of equations.

The first two members of the BBGKY hierarchy look like:
�
@

@t
C i.!i � !j/

�
Bi;j

D �i
Z

dk2;3;4ŒTi;2;3;4 < a�
j a

�
2a3a4 > ıiC2�3�4 � c:c:.i $ j/�;
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Similarly, the equation for the fourth moment involves the sixth moment. It becomes

�
@

@t
C i.!i C !j � !k � !l/

�
< aiaja

�
k a

�
l >

D �i
Z

dk2;3;4ŒTi;2;3;4 < a�
2a

�
k a

�
l a3a4aj > ıiC2�3�4 C .i $ j/�

Ci
Z

dk2;3;4ŒTk;2;3;4 < a�
3a

�
4a

�
l a2aiaj > ıkC2�3�4 C .k $ l/�:

The second assumption we make is that of a homogeneous wave field. This
assumption means that the two point correlation function < �.x1/�.x2/ > depends
only on the distance x1 � x2. As a consequence of homogeneity, the second
moment becomes

Bi;j D Niı.ki � kj/;

where Ni is the spectral action density.
Applying the random phase approximation to the sixth moment gives for the

fourth cumulant D, subject to the initial value D.t D 0/ D 0,

Di;j;k;l D 2Ti;j;k;lıiCj�k�lG.�!; t/
�
NiNj.Nk C Nl/ � .Ni C Nj/NkNl

�

where�! D !i C !j �!k � !l. The derivation of this result requires extensive use
of the symmetries of T. In addition, the action density N is assumed to evolve on
the slow time scale. The complex resonance function G is defined as

G.�!; t/ D i
Z t

0

d�ei�!.��t/ D Rr.�!; t/C iRi.�!; t/:

Knowledge of the fourth cumulant is essential for (a) obtaining the evolution of
N caused by four-wave interactions and (b) for the determination of deviations from
normality. For example, use of D in second moment equation gives

@

@t
N4 D 4

Z
dk1;2;3T21;2;3;4ı1C2�3�4Ri.�!/ ŒN1N2.N3 C N4/ � N3N4.N1 C N2/�

(27)

where �! D !1 C !2 � !3 � !4. Note that Eq. (27) is a slight generalization
of the classical result obtained by Hasselmann [9] as this equation admits both
resonant and non-resonant wave-wave interactions. This follows by observing that
the imaginary part of the resonance function

Ri.�!; t/ D sin.�!t/=�!
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implies two timescales. For short times one has limt!0 Ri.�!; t/ D t,
hence TNL D O.1=�2!0/, the Benjamin-Feir timescale, corresponding to non-
resonant interactions. On the other hand, for large times it is found that
limt!1 Ri.�!; t/ D �ı.�!/, corresponding to resonant wave-wave interactions,
hence TNL D O.1=�4!0/ [9].

Nonlinearity (both bound waves and dynamics) induce deviations from Gaussian
statistics. When these deviations are small the p.d.f. of e.g. the surface elevation �
will follow the well-known Gram-Charlier expansion, i.e. with x D �= < �2 >1=2

the normalized surface elevation,

p.x/ D
�
1C C3

6

d3

dx3
C C4

8

d4

dx4
C : : :

�
f0; (28)

where f0 is given by the normal distribution

f0 D 1p
2�

e� x2
2 :

Deviations from Normality are therefore most conveniently expressed by means of
skewness C3 and kurtosis C4. However, with four-wave interactions the free-wave
contribution to skewness is vanishingly small. Therefore, for free-waves, kurtosis is
of most interest. It is here defined as

C4 D< �4 > =3 < �2 >2 �1:

Using the expression for the fourth cumulant the contribution to kurtosis by
means of four-wave interactions is found to be

Cdyn
4 D 4

g2m20

Z
dk1;2;3;4T1;2;3;4ı1C2�3�4 .!1!2!3!4/

1
2 � Rr.�!; t/N1N2N3; (29)

where Rr.�!; t/ D .1 � cos.�!t//=�!. The form of the function Rr implies
that the dynamic kurtosis is mainly determined by non-resonant interactions. The
result (29) shows that deviations from Gaussianity are connected to the mean state.
This expression gives the contribution of the free waves to the kurtosis, which is in
general time dependent because the resonance function Rr depends on time. It is a
six-dimensional integral and is in an operational context too expensive to evaluate.
Some properties of the above expression for the free-wave kurtosis will be given
after presenting the effect of bound waves.
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6.3 Stochastic Approach: Bound Waves

We now use the canonical transformation to obtain nonlinear corrections to the free
wave spectrum and to obtain contributions to skewness and kurtosis due to the bound
waves. We make the two usual assumptions of a homogeneous, Gaussian sea state.
The spatial correlation function is

�.�/ D h�.x C �/�.x/i

The wave number spectrum F.k/ then follows immediately by Fourier transforma-
tion in �, i.e.

F.k/ D 1

4�2

Z
d� �.�/eik�� :

The spatial correlation function can now be expressed in terms of the Fourier
transform of the surface elevation O�, while utilizing Eq. (10) which relates O� to
the action density variable A and using the explicit expression for the canonical
transformation given in (13), which is of the form

A D �a C �2b C �3c C :::::

Introducing the free wave surface elevation spectrum according to

E.k/ D !N.k/
g

the wavenumber spectrum becomes:

F.k1/ D 1

2
E1 C 1

2

Z
dk2;3E2E3

˚
A 2
2;3ı1�2�3 C B2

2;3ı1C2�3



C E1

Z
dk2E2C1;1;2;2 C fk1 ! �k1g ; (30)

where, with f1 D .!1=2g/
1=2,

A2;3 D f2C3
f2f3

�
A.1/2C3;2;3 C A.3/�2�3;2;3

�
; B2;3 D 1

2

f2�3
f2f3

�
A.2/3�2;2;3 C A.2/2�3;3;2

�
;

and

C0;1;2;3 D f0
f1 f2 f3

�
B.2/0;3;2;1 C B.3/�0;1;2;3

�
;

therefore the coupling coefficients A ;B and C can all be expressed in terms of the
matrix elements that determine the canonical transformation. In Fig. 11 the bound
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Fig. 11 Shown is the Phillips spectrum for free waves and the resulting second-order spectrum
with and without (labeled B&W) the quasilinear effect. For large wavenumbers the second-order
spectrum without quasi-linear effect behaves as 1=k resulting in a divergent expansion in powers
of wave steepness

wave spectrum is shown for a one-dimensional free-wave spectrum which has the
Phillips form, i.e. E.k/ D 1

2
˛pk�3; k=k0 > 1. In this case the bound-wave part of the

wave spectrum can be derived analytically (cf. [2] for details). The Figure clearly
shows the importance of the quasi-linear effect giving by the last term in Eq. (30).
In fact, one needs to include this term in order to obtain a convergent expansion of
the wave spectrum in powers of the wave steepness.

Also, in [2], an expression for the directional frequency spectrum is found as
well, but in that case there is an additional contribution due to the Stokes-drift.

The properties of the frequency spectrum have been extensively studied in [2].
In order to get a feeling of how second-order effects change spectral shape I have
plotted in Fig. 12 the freewave spectrum and the wave spectrum including second-
order effects for two different depths D D 3:0 and D D 1:7m. It is seen that
for shallow waters second-order effects are important and in particular the low-
frequency part of the spectrum depends in a sensitive manner on the actual depth
value.

We can also use the canonical transformation to obtain contributions to skewness
and kurtosis due to the bound waves.

By definition the skewness C3 and excess kurtosis C4 read

C3 D �3

�
3=2
2

; C4 D �4

3�22
� 1;

where �n D h�ni; n D 2; 3; 4; are the second, third and fourth moment of the p.d.f.
of the surface elevation, while the first moment h�i is assumed to vanish. Recall that
for a Gaussian p.d.f. both C3 and C4 vanish. Also note that �2 D m0!
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Fig. 12 Effect of second-order contributions to the wave spectrum is substantial for shallow
waters, k0D D O.1/

The skewness becomes

C3 D 3

�
3=2
2

Z
dk1;2E1E2 .A1;2 C B1;2/ : (31)

and the excess kurtosis has the form

Ccan
4 D 4

�22

Z
dk1;2;3T1;2;3E1E2E3: (32)

The expression for the coupling matrix T may be found in [2]. There is one impor-
tant distinction between the free-wave stats [cf. (29)] and the bound-wave stats.
Equations (31) and (32) are diagnostic relations because the coupling coefficients
are independent of time. Therefore, for stationary spectra the bound-wave contribu-
tions to skewness and kurtosis are constant in time while the dynamic part of the
kurtosis will evolve in time. This will be studied in more detail in the next section.

6.4 Results for Skewness and Kurtosis

To summarize, skewness and kurtosis are now know in terms of multi-dimensional
integrals over the wave number spectrum of the free waves. In principle, from
knowledge of the evolution of the wave spectrum as obtained from a wave fore-
casting system, we are now able to determine these important statistical parameters.
Actual values for general spectra can only be obtained by means of numerical
integration. Here, in order to have some idea of the order of magnitude of these
parameters, some special cases will be discussed which have an analytical solution.
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Fig. 13 Skewness Ccan
3 (left panel) and kurtosis Ccan

4 (right panel) for a steepness � D 0:1 as
function of dimensionless depth x D k0D. Dashed line corresponds to the case of a Phillips’
spectrum, while the black line corresponds to the case of a single wave train with the same variance
while the carrier wavenumber equals the peak wavenumber k0

6.4.1 Bound Waves

Simple results for skewness and kurtosis caused by the bound waves are only known
for deep water. Introducing the significant steepness � D k0m

1=2
0 one finds for a

single wave train with spectrum E.k/ D m0ı.k � k0/

Ccan
3 D 3�; Ccan

4 D 6�2 (33)

More elaborate expressions are known that give the depth dependence of these
statistical parameters for a single wave train (see e.g. [2]). These are shown in
Fig. 13, and it is seen that in particular the kurtosis depends in a sensitive manner on
depthD. For comparison, also results for the Phillips spectrum E.k/ D 1

2
˛pk�3; k �

k0 are shown, suggesting that spectral shape is important in determining these
parameters.

6.4.2 Free Waves

We are basically dealing here with a problem concerning the balance between
dispersion of the waves and its nonlinearity (giving focusing). In 1D and in the
narrow-band approximation, this balance may be expressed by the Benjamin-Feir
Index, and the nonlinear focussing is connected with envelope solitons. In 2D the
balance between dispersion and nonlinearity is destroyed, because solitary waves
are unstable. This imbalance is measured by an additional parameter, namely
the ratio R of directional width and frequency width. For simple initial spectra
(characterized by variance and width only) it can be shown that large time solutions
to NLS are determined in 1D by the BFI and in 2 D by BFI and R only.
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Properties of the dynamic part of the kurtosis have mainly been studied for
narrow-band spectra. To that end the general result (29) is applied to a spectrum
that is mainly concentrated at ! D !0 and � D �0. Introduce scaled variables

� D .! � !0/=.ı!!0/; � D .� � �0/=ı�
where ı! is the relative width of the frequency spectrum and ı� is the directional
width. With E D E.�; �/ the frequency direction spectrum, the kurtosis becomes

C4 D J.R; �/BFI2; (34)

where

J.R; �/ D 2

Z
d�1;2;3d�1;2;3E1E2E3G.�!; �/;

with

G.�!; �/ D 1 � cos.�!�/

�!
;

the real part of the resonance function. Here, � D ı2!!0t is dimensionless time, and
�! D .�3 � �1/.�3 � �2/� R.�3 � �1/.�3 � �2/.

For a Gaussian wave spectrum E D 1
2�
e� 1

2 .�
2C�2/ the factor J.R; �/ may be

evaluated analytically, [24]. For 2D propagation the factor J.R; �/ becomes

J.R; �/ D �i
Z �

0

dz

f.1� 2iz C 3z2/.1C 2iRz C 3R2z2/g1=2 C c:c: (35)

It can be shown from (35) that for 1D propagation, i.e. R D 0, the dynamic part of
the kurtosis has a finite value for large times,

lim
t!1 J.0/ D �

3
p
3

! Cdyn
4 D �

3
p
3
BFI2;

in agreement with a result obtained in [25]. However, for finite R kurtosis will
always decay to zero for large times.

For different values of the directional width parameter R the resulting time
dependence of the dynamic part of the kurtosis is shown in Fig. 14. From the Figure
it is immediately evident that 1D propagation is an exception, because for this case
the kurtosis has a finite value for large times, while for finite R the kurtosis vanishes.
Again, the occurrence of freak waves is connected with the generation of (Envelope)
solitons. In 1D, solitons are stable entities based on the balance of dispersion
and nonlinear steepening. However, the ocean surface is two-dimensional. This
additional degree of freedom does not allow the formation of solitons, rather freak
waves become a transient phenomenon.
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Fig. 14 NLS evolution of
normalized kurtosis versus
time for different values of R.
Results using the expensive
brute force method are shown
as well
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Finally, in ECMWF’s freak wave warning system we cannot deal with a time
dependent kurtosis. To be on the safe side it was decided to use the maximum value
of J. For this reason, in Fig. 15 the dependence of the maximum value of J on R was
studied. A good fit is found using

J

N
D R0.1 � R/

R C R0
; N D �

3
p
3
; (36)

with R0 D 7:44
p
3=4�3. This fit is used in ECMWF’s freak wave warning system.

6.5 Comparison with Monte Carlo Simulations

It is important to determine the range of validity of the theory of resonant and
non-resonant four-wave interactions. For example, this theory assumes that the
wave steepness is sufficiently small and the p.d.f. of the surface elevation (28) is
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close to a Gaussian. In order to address these questions we simulate the evolution
of an ensemble of waves by running a deterministic model with random initial
conditions. Only wave propagation in one dimension will be considered here, but
in the literature there are several examples of studies that investigated the two-
dimensional case (see e.g. [26]).

It should be clear that there is a strong need to investigate the occurrence of
extreme wave events in the context of ensemble forecasting. The main reason is that
the formation of freak waves depends in a sensitive manner on the choice of the
initial phases, while in practice (at sea!) we have no knowledge of the phases of the
waves. Because of this lack of knowledge of the initial phases we perform Monte
Carlo simulations with the evolution equations for water waves: Amplitudes are
drawn from the wave spectrum, while phases are randomly drawn from a uniform
distribution.

The Figs. 16, 17, and 18 present some results of the ensemble mean evolution
of the Zakharov equation for the 1-D case, and the numerical results are compared
with the theory as developed in the present lectures. First, it is shown how for the
extreme case of BFI D 1:4 the wave spectrum evolves in time owing to the nonlinear
four-wave interactions. Note that in 1D there are no resonant interactions therefore
the rate of change in time of the wave spectrum is entirely caused by non-resonant
interactions. In addition, Fig. 17 shows, to what extent the nonlinear interactions
cause deviations of the surface elevation p.d.f. from the Normal distribution. These
deviations are quite extreme, but they are fairly well described by the p.d.f. (28).
In this extreme situation the deviations from the Normal distribution are to a large
extent caused by kurtosis effects. For this reason, we show in Fig. 18 the dependence
of the kurtosis on the BFI. Overall, a fair agreement between theory and numerical
simulations is noted.

Fig. 16 Initial and final time
wave number spectrum using
the Zakharov equation. Error
bars give 95% confidence
limits. Results from theory
are shown as well
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Fig. 17 Log of p.d.f. of surface elevation (BFI D 1:4). For reference the Gaussian distribution is
shown as well. Freak waves correspond to a normalized height of 4 or larger

Fig. 18 Normalized Kurtosis as function of the BF Index. Shown are results for focussing from
simulations with NLS and with the Zakharov equation, and corresponding theoretical results
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7 Comparison with Observations from Wave Tanks

We have put forward arguments that for 1-D propagation nonlinear focussing of
wave energy by means of non-resonant wave-wave interactions plays a crucial role
in the formation of freak waves. On the other hand, for broader directional spectra
the effect of non-resonant interactions in freak waves generation is much reduced.
However, nonlinear effects connected to presence of bound waves, for example,
may still give rise to finite skewness and kurtosis, resulting, therefore, in deviations
from the Normal distribution, and as a consequence in an increase in the probability
of extreme events. In general, we have seen that the statistical 4-wave interactions
theory not only allows for a description of the average sea state, but it also gives
information on the deviations of the sea state from the ensemble averaged value.
Therefore, in principle, one can make statements of a probabilistic nature on the
occurrence of extreme events.

Nevertheless, it should be clear that there is evidently a need of extensive
experimental verification. This is not an easy task because extreme events such as
freak waves formation only rarely occur in Nature. The best change we have is
to try to validate our approach by performing laboratory experiments where freak
wave generation may be observed under controlled circumstances. And, indeed,
nowadays extensive validations in 1D and 2D wave tanks have been performed.
Here, examples are given from the large wave tank in Trondheim [27, 28] and the
one from the University of Tokyo [29].

Before we discuss the experimental results it is important to decide which
quantity is used in the comparison between observations and theory. Traditionally,
researchers have focussed on wave height as the key parameter to express the
severity of the sea state. The reason for this choice is that observations of the sea
state have for a long time been based on visual inspection of the surface height from
a ship. Nevertheless, ocean wave prediction has always been based on a spectral
description of the sea state and the key parameter to describe the sea state is the
wave spectrum, which is normalized in such a way that the integral of the wave
spectrum F.k/ over wavenumber space is given by the wave variance h�2i, i.e. the
zeroth moment of the wave spectrum becomes

m0 D
Z

dkF.k/ D h�2i;

and the connection between the spectral approach and the statistics is given by the
relation

�2 D m0;

with �2 the already introduced second moment of the p.d.f. of the surface elevation.
It is therefore more natural to characterize extreme events in terms of the ‘local’
energy of the sea state, which boils down to the power of a signal in nonlinear



Hamiltonian Description of Ocean Waves and Freak Waves 147

optics and in the theory of communication [30]. Of course, there is a straightforward
connection between wave energy and ‘significant’ wave height, but it only holds
for narrow-band spectra. When energy (or, as we will see in an moment envelope
wave height) is taken as the key parameter to characterize the mean sea state and
its statistical aspects, then it is possible to formulate a characterization of extreme
events which is not restricted to narrow-band spectra but is valid for ‘arbitrary’
spectral shape. A more extensive discussion of this given in [31], including a
derivation of the results that follow in this Section.

Following [30], the surface elevation may, in general, be written as

� D � cos�;

where the envelope � and the phase � depend on space and time (note that the local
frequency! is just �@�=@t). The envelope � then may be obtained from the surface
elevation � and its Hilbert transform � D H.�/ D � sin �, and it is defined by

� D
p
�2 C �2:

and the local energy equals �2=2. In the remainder results will be presented for
the scaled parameters �0 D �=h�2i1=2 and � 0 D �=h�2i1=2, so we scale surface
elevation and its Hilbert transform by means of its variance and the primes will be
dropped. The instantaneous, local wave height h is then just twice the envelope, i.e.
h D 2�. Using the Gram-Charlier expansion for the surface elevation, the p.d.f. of
dimensionless wave height h becomes

p.h/ D 4h exp.�2h2/ �1C C4AH.h/C C23BH.h/
�

where

AH.h/ D 2h4 � 4h2 C 1; BH.h/ D 4h6 � 18h4 C 18h2 � 3

Here,C4 andC3 are kurtosis and skewness of the envelope wave height (time) series,
and only recently general expressions for these quantities have been obtained in
terms of the given free-wave spectrum (see for this [32]). For vanishing kurtosis
and skewness the envelope wave height p.d.f. reduces to the Rayleigh distribution.
Furthermore, in terms of the dimensionless wave energy, given by E D 2h2, one
may obtain the exceedance probability P.E > Ec/ that the wave energy exceeds
a threshold value Ec by integrating the envelope wave height p.d.f.. As a result
one finds

P.E > Ec/ D
Z 1

Ec

dh p.h/ D e�Ec
�
1C C4A.Ec/C C23B.Ec/

�
; (37)

where

A.E/ D 1
2
E.E � 2/; B.E/ D 1

2
E.E2 � 6E C 6/ (38)
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Fig. 19 Comparison of
theoretical and observed [27]
wave height distribution. For
reference, the result from
linear theory, the Rayleigh
distribution, is shown as well
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The exceedance probability is required when one is interested in quantities such as
the maximum wave height distribution.

In Fig. 19 we compare the theoretical exceedance probability with observations
from the Trondheim wave tank in [27]. The experiment considered a case of one-
dimensional propagation with a quite narrow frequency spectrum resulting in a BFI
which is close to 1, and a kurtosis C4 D 0:33. In such a very narrow-band case
skewness effects are relatively unimportant.

Finally, we have already mentioned that when the directional width of the wave
spectrum increases the impact of the non-resonant interactions on the kurtosis of the
sea state is much reduced. This is illustrated in Fig. 20 where we plot the kurtosis,
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defined as �4 D 3.1 C C4/ as a function of the directional width parameter 
� (in
radians). Here, the theoretical value of the kurtosis C4 consists of the sum of the
free-wave part and the bound-wave part and the free-wave part shows a sensitive
dependence on directional width, becoming quite small for a directional width
larger than 10ı, while the bound-wave part is fairly insensitive to the directional
distribution. It is seen that there is a fair agreement between theory and observations.

8 Operational Implementation and Verification

We now briefly summarize the theoretical development we have followed during the
lectures. From the Zakharov equation which describes the deterministic evolution of
a continuum of surface gravity waves we obtained by ensemble averaging the evolu-
tion of the free-wave spectrum and the second-order spectrum. In addition, we found
that the weakly nonlinear free-waves and its associated non-resonant interactions
give rise to a finite contribution to the kurtosis of the surface elevation only, while
the bound-waves contribute to both the skewness and the kurtosis. In principle, we
can now give statements on the exceedance probability of extreme events.

The theoretical results for the skewness and kurtosis, given in Eqs. (28), (31)
and (32) involve too many computations for an operational implementation such
as in the ECMWF wave forecasting system. We therefore have implemented fairly
crude approximations for these statistical parameters. They are essentially given by
Eqs. (33) and (36). Using this, the probability distribution of surface elevation � and
the envelope wave height h can be determined and from this all kinds of parameters
that characterize how extreme the sea state is. We now discuss, in particular, one
parameter that is of importance to characterize extreme events, namely the p.d.f. of
maximum wave height hmax and its expectation value hhmaxi!

In [33] Goda obtained the maximum wave height distribution from a (time) series
of N wave events. Here, the maximum (envelope) wave height distribution follows
from the probability that a certain event attains the maximum value multiplied by
the probability that all other events are below the maximum value while realizing
there are N possibilities. Introducing the function

G .h/ D �NP.h/;

which, apart from a minus sign, equals to the product of the number of events N and
the already introduced cumulative distribution

P D
Z 1

h
dh p.h/;

one finds for large N the maximum envelope wave height distribution

pmax.h D hmax/ D dG

dh
exp.G /: (39)
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Close inspection of this result shows that this distribution is a double exponential
function in general, but for large maximum envelope wave heights (typically of the
order of 2 or larger) the p.d.f. simplifies considerable because it becomes

pmax.h/ D N p.h/:

Now, the remaining task is how to choose the number of events. Janssen in [34]
has studied this issue extensively for time series. To that end one needs to define
what an event is. It is customary to define an event with respect to a reference level
hc, therefore an event starts where the envelope has an up-crossing and finishes
at the next down-crossing. The frequency of events is then determined by the up-
crossing frequency, and N then equals the product of the up-crossing frequency and
the length TL of the time series. However, the frequency of events depends on the
chosen reference level, and, therefore it may be more appropriate to introduce an
average frequency. Janssen in [34] took as measure the average of the rate of change
of h with time, Ph, normalized with h itself. The averaging is done using the joint
p.d.f. of h and Ph which for a Gaussian sea state can be easily obtained from the joint
p.d.f. of envelope � and phase � and its time derivatives (see e.g. [31]). Performing
the averaging one finds for the average up-crossing frequency

h fupi D hPh=hi D � N!; (40)

where N! is the mean angular frequency, determined by the ratio of the first and
zeroth moment of the spectrum, N! D m1=m0, while � is the spectral width parameter
defined as � D .m0m2=m21 � 1/1=2. When analyzing timeseries in terms of the
envelope, the frequency scale � N!, which corresponds to the inverse of the timescale
of the wave groups, is introduced in a natural way. The number of envelope events
N is therefore, as expected, related to the number of wave groups, thus

N D � N! TL; (41)

and for this choice of the number of events good agreement between the maximum
wave height p.d.f. and Monte Carlo simulations of a Gaussian sea state was reported.
In particular, it was shown that the expected maximum envelope wave height scales
with N while it does not scale with the number of waves Nw D TL=TP (with TP the
peak period) in the time series, see [34].

From the result (39) two interesting quantities may be obtained. The first one is
the expectation value of maximum wave height. It is defined by

hhmaxi D
Z 1

0

dh h pmax.h/: (42)

Using (39) an approximate expression for the expected maximum wave height have
been obtained in [31], and this expression is used in the ECMWF wave forecasting
system. An example of a synoptic maximum wave height map for the tenth of
February 2007 is shown in Fig. 21.
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Fig. 21 Analysed maximum wave height map for 10 February 2007. Note the maximum in the
North Atlantic of 31.5 m while the significant wave height was about 15 m. The duration TL was
chosen to be 3 h corresponding to a typical synoptic time scale

The second interesting quantity is an exceedance probability for maximum wave
height. The probability that maximum envelope wave height equals or exceeds a
given observed value, denoted by hobsmax, is given by

Pex.h
obs
max/ D

Z 1

hobsmax

dh pmax.h/ D 1 � exp.�NP.hobsmax// (43)

and this quantity will be used in our discussion of a special extreme event at the end
of this lecture.

8.1 Validation

For a number of reported incidents at sea I have checked that our forecasting system
is indeed giving indications that there was an extreme sea state at the time of
the accident. Examples are incidents with the cruiser Dawn and the cruiser Louis
Majesty. But this is, of course not an objective validation!!

I regard individual events, obtained from buoy observations, just as a random
draw from a large ensemble of possibilities. In order to simulate these observations
a random draw is taken from the theoretical p.d.f. of Hmax using values of mean
wave height and skewness and kurtosis obtained from the wave prediction system.
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Fig. 22 Comparison of observed and modelled maximum wave height distribution based on a
30,000 collocations of Canadian buoys and operational ECMWF results (from [35])

In Fig. 22 is shown a comparison of observed and modelled probability distri-
bution of Hmax. The number of observations was 30,000 and they were provided
by the Canadian buoy network that produces a measure for maximum wave
height. These observations were collocated with modelled wave spectra produced
by the operational ECMWF wave forecasting system, and from the spectra all
the necessary statistical information was obtained to produce a random draw of
maximum wave height. In the Figure two modelled maximum wave height p.d.f.’s
are shown. The dashed blue line is obtained using linear theory so that the p.d.f.
of envelope is the Rayleigh distribution. It is clear from the Figure that for large
dimensionless maximum wave height hmax the shape of the theoretical p.d.f. really
differs from the observed one. The underestimate by linear theory starts already at
hmax D 2. This is fairly poor since in practice a sea state is regarded to be a potential
freak wave state provided hmax > 2:2. On the other hand, when finite skewness and
kurtosis produced by weakly nonlinear effects are included in the statistical model,
a much better agreement between modelled and observed maximum wave height
p.d.f. is found, at least in the dimensionless maximum wave height range between
2 and 2.5.

Therefore the nonlinear approach is better in dealing with extreme events, but the
exception is for really extreme states with hmax > 2:5. It appears that in practice the
p.d.f. of envelope wave height and maximum wave height has an exponential tail.
This not only follows from the observed p.d.f. in Fig. 22 but also from observations
in the field of nonlinear optics, [36, 37], and from numerical simulations using
equations modelling four-wave interactions (see e.g. [36, 37]) and using a simple
Stokes wave train [34]. As mentioned by Residori (Private Communication 2015),
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for extreme waves in a nonlinear optical cavity, it has been noted that the observed
probability distribution function for intensity E can be well approximated by the
following simple stretched exponential form [36]

p.E/ D Ne�p
c1Cc2E

where 1=c1 provides a measure for deviations from Gaussian statistics which gives
an exponential distribution in E, while in terms of envelope height h, with E D 2h2,
one obtains a Gaussian distribution function.

Janssen in [32] has successfully used the stretched exponential tail to extend
the validity of the present approach to really extreme sea states. The reason that
the present approach fails is probably that the Gram-Charlier expansion, given in
Eq. (28), which is the basis of the present development, is not a uniformly valid
expansion. Therefore, theoretically, a somewhat different approach needs to be taken
for the very extreme events, but at the moment it is not clear how to proceed.
What is clear, however, is that there is ample evidence for an exponential tail for
large deviations, and it would be of great interest to try to understand whether this
exponential behaviour is in some sense universal.

8.2 A Special Case: The Draupner Freak Wave

The Draupner wave event occurred on New Years day 1995 at 3 pm in the afternoon
and was one of the first recorded freak wave events. The first 10 min of the time
series, obtained from [38], is shown in Fig. 23. In addition, the time series for the
envelope � is shown as well. This event is quite extreme since the dimensionless
maximum envelope wave height hobsmax D 3:1 while the local dimensionless energy
E is close to 20. Draupner is the name of an oil rig that is located in the North Sea
between the Norwegian and Scottish coast and has a depth of about 70 m. At the time
of the freak wave event the wave spectrum was mainly windsea with a rather broad
directional distribution. Winds were quite strong and generated such long waves that
the sea state consisted of intermediate shallow water waves, with k0D D 1:45, where
k0 is the peak wavenumber. The storm that generated the windsea was a combination
of a large scale low located over the southern part of Sweden and a small scale polar
low that propagated rapidly during the day from the Norwegian Sea to the Wadden
Sea, while at the time of the freak wave event it was close to the Draupner platform.
Simulation of such a complicated meteorological situation is not a straightforward
task but it was Cavaleri et al. [39] who managed to simulate this event for the first
time using a high-resolution version of the ECMWF coupled atmosphere, ocean-
wave forecasting system. The simulation produced the model spectra which were
required for the evaluation of the relevant statistical parameters such as skewness
and kurtosis.
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Fig. 23 Time series of the Draupner freak wave (in black). The envelope time series � is shown in
red and this clearly illustrates how extreme this event is. The corresponding local wave energy at
the maximum is about 20 times the average wave energy

I will argue now that in the context of the present statistical approach it is
only possible to try to answer the question how likely the Draupner freak wave
event is. Recall (see Sect. 6.1) that such extreme events are caused by constructive
interference which are additionally amplified by finite amplitude effects such as
the presence of bound waves and focussing by four-wave interactions. This means
that an extreme event is similar to the luck of the draw from the lottery since we
have no detailed knowledge of the phases of the individual waves. For this reason
I have followed a statistical approach, but it should be clear that this approach
cannot be validated against an exceptional singular event such as Draupner is. At
best one can determine how likely such an event is in the context of our model of
‘reality’. Traditionally, for time series it then seems reasonable to apply Eq. (43)
which gives the probability that the maximum envelope wave height exceeds the
observed maximum wave height. However, if one is interested in the likelihood of
an event then considering only the time domain seems to be too restrictive. I decided
therefore to determine for a domain of the size of a model grid box the probability
that maximum wave height exceeds the observed value at the Draupner location.
Evaluation of this exceedance probability relies, of course on an accurate modelling
of the skewness and kurtosis parameter, on an accurate modelling of the tail of the
envelope wave height distribution and on an accurate estimation of the number of
envelope events N in the spatial domain. A discussion of these important details is
given in [32].

Combining everything together I show in Fig. 24 the time series of the
exceedance probability given in Eq. (43), where I have chosen for observed
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Fig. 24 Evolution in time of simulated exceedance probability Pex.hobsmax/ for hobsmax D 3:1. Location
is the Draupner platform on the 1st of January 1995

dimensionless maximum wave height hobsmax D 3:1. The size of the spatial domain is
10�10 km2. Three cases are shown, namely, probabilities according to linear theory
(a Gaussian sea state), nonlinear theory and nonlinear theory with an exponential
tail. It is seen that according to nonlinear theory with exponential tail added it is
fairly likely that the freak wave event could have happened in the Draupner area,
but, on the other hand, according to linear theory this does not seem to be very likely.
Furthermore with some optimism in mind, it could be argued that there is evidence
that the freak wave event should have most likely occurred around 15:00–16:00 h in
the afternoon simply because the exceedance probability is maximum at that time.
The reason for the maximum is that the waves are so long that shallow water effects
play a role. As shown in Fig. 13, in particular the bound-wave part of the kurtosis is
a sensitive function of the dimensionless depth and increases quite sharply when the
waves become more shallow. Note that for the Draupner wave event the directional
wave spectrum was very broad so that the free waves contribution to the kurtosis is
not dominant.

9 Conclusions

It is clear that even after 200 years ocean waves is still a very lively field. The last
50 years we have seen tremendous improvements in our ability to forecast waves
and by using the methods of Statistical Mechanics we have made great progress
in understanding the subject. It has been made plausible how the probability of
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the occurrence of extreme events can be related to the mean sea state. A first
attempt to develop an operational freak wave system seems to give realistic results.
Nevertheless, further developments are required. For example, the determination of
the kurtosis of the wave field is based on the narrow-band approximation, which
does not give a truthful description of what happens when two or more nonlinear
wave trains are present. Further validation of this approach in the field is evidently
needed. Global satellite data, such as from the Altimeter and the SAR, would be
an ideal source for information on extreme events. However, still a lot of work is
needed to extract extreme sea state information from these data.
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Modelling Transient Sea States
with the Generalised Kinetic Equation

Sergei Y. Annenkov and Victor I. Shrira

Abstract For historical and technical reasons evolution of random weakly nonlin-
ear wave fields so far has been studied primarily in a quasi-stationary environment,
where the main modelling tool is the kinetic equation. In the context of oceanic
waves sharp changes of wind do occur quite often and can generate transient sea
states with characteristic timescales of up to hundreds of wave periods. It is of great
fundamental and practical interest to understand wave field behaviour during short-
lived and transient events. At present nothing is known about such ephemeral sea
states. One, but not the only, reason was that there were no adequate modelling
tools. The generalised kinetic equation (gKE) derived without assumptions of quasi-
stationarity seems to fill this gap. Here we study transient events with the gKE
aiming to understand what is going during such events and capabilities of the gKE in
capturing them. We find how wave spectra evolve being subjected to sharp changes
of wind, while tracing in parallel the concomitant evolution of higher moments
characterizing the field departure from gaussianity. We demonstrated the capability
of the gKE to capture short-lived events, in particular, we found sharp brief increase
of kurtosis during squalls, which suggests significant increase of the likelihood of
freak waves during such events. Although the study was focussed upon wind wave
context the approach is generic and is transferrable to random weakly nonlinear
wave fields of other nature.

1 Introduction

Winds over the sea are known to be variable on all timescales, including rapid
changes over tens of minutes [5]. Although sharp changes of wind do occur quite
often and can generate transient sea states with characteristic timescales of up to
hundreds of wave periods, at present very little is known about such sea states. An
experimental study of short lived transient phenomena is extremely difficult, if not
impossible apart from laboratory wind wave tanks; so far, no systematic laboratory
study have been undertaken. In wind wave modelling the fast variability was not
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taken into account for two main reasons. First, the wind forecasting did not resolve
such scales (although the situation has radically improved very recently) and, hence,
there was no need in such modelling for operational forecasting. Now the time
resolution of wind forecasting has dramatically improved, which makes modelling
of transient states highly desirable. Second, on the theoretical side, there have been
no adequate mathematical tool able to describe evolution of random wave fields
on such short scales. This second difficulty was not specific for wind waves, but
is common for all random nonlinear wave fields. What in the wave field behaviour
during short-lived and transient events is of fundamental interest in and beyond the
context of wind waves? It is a priori plausible that during these events freak waves
are more likely. It would be of obvious interest to check this assumption and describe
quantitatively the evolution of the wave field statistical characteristics. Since there is
now a surge of interest in freak waves in other physical contexts, such a clarification
is relevant beyond the water wave context. Here we report the progress in clarifying
these questions achieved by employing a new mathematical tool—the generalised
kinetic equation (gKE). In what follows we consider only the water wave context.

Most of the existing approaches to the modelling of random weakly nonlinear
waves are based on the kinetic equation (KE) which in the water wave context is
also often referred to as the Hasselmann equation [15, 22]. For water waves it was
first derived by Hasselmann [9] in the form

dn.k; t/
dt

D Sinp C Sdiss C Snl;

were n.k; t/ is the two-dimensional wave action spectrum as a function of wavevec-
tor k and time t, the terms Sinp and Sdiss describes wind forcing and dissipation
respectively. The interaction term Snl, dominant for energy carrying waves, is
derived from first principles employing an asymptotic procedure based upon
smallness of nonlinearity parameter " and a number of additional assumptions:

Snl D 4�

Z
T20123 f0123ı0C1�2�3ı.!0 C !1 � !2 � !3/ dk123; (1)

where f0123 D n2n3.n0 C n1/ � n0n1.n2 C n3/, ni � n.ki/ are spectral densities at
wavevectors ki, ı0C1�2�3 � ı.k0 C k1 � k2 � k3/ and T0123 is given by an explicit
(but long) expression.

Crucially, the expression for Snl is derived under the assumption of quasi-
stationarity of the random wave field, and the resulting equation has the built-in
O."�4/ timescale of evolution. Therefore, strictly speaking, the Hasselmann equa-
tion is not applicable to situations with rapid changes of environment, such as wind
gusts. Due to the lack of alternatives, this fact is usually ignored. The Hasselmann
theory was used to model the response to an instant and sharp increase or decrease
of wind (e.g. [21]). It is not clear to what extent these results can be trusted, since
the conditions of validity of the Hasselmann equation are clearly violated. There is
experimental evidence that after a sharp change of wind random wind waves appear
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to evolve faster than the O."�4/ timescale predicted by the KE [3, 4, 19, 20]. An
example of a natural phenomenon that cannot be legitimately described on the basis
of the Hasselmann equation is a squall, understood as a sharp increase of wind for a
short time. Squalls are an important natural hazard, and their implications for wind
waves are poorly understood.

In [1], extending the seminal work by Janssen [12] a generalised kinetic equation
(gKE) was derived, without employing the O."�4/ scaling assumption. The nonlin-
ear term of the gKE differs from the classical Snl in two important aspects. First, it
is nonlocal in time: the evolution of a spectrum depends not just on the spectrum
itself at the chosen instant, but on the previous history of evolution. Therefore, the
gKE requires an initial condition for a fourth-order correlator specified below which
contains some residual information about the “previous” history. If this correlator
is taken as zero at the initial moment, which corresponds to prescribing completely
uncorrelated phases at the start of the evolution (we will refer to such a situation
as “cold start”), the correlator ceases to be zero at later times. Second, while the
Hasselmann Snl includes only exactly resonant wave interactions, the gKE explicitly
includes all interactions, although, as one might expect, the evolution primarily
depends on those interaction that are close to resonance. First attempts at the
numerical simulation of the gKE were made by Gramstad and Stiassnie [7, 8], who
examined the initial stage of evolution of model spectra. One of the prime purposes
of this study is to present and discuss in detail a new efficient parallel algorithm
for the numerical simulation of the gKE and to perform computations of spectral
evolution under constant and changing wind. In this context we systematically
examine and demonstrate the capabilities of the gKE. To this end we compare
the gKE simulations with the simulations of the Hasselmann equation, the latter is
integrated using the well-established WRT algorithm, the code for which was kindly
provided by G. van Vledder. Under constant wind, there is very little difference
between the predictions of the KE and gKE: according to both equations spectra
approach the same asymptotic regime for large time. For sharp changes of wind
only the gKE is expected to be valid, and we demonstrate with the gKE how the
wave spectra respond to such changes, for example, how a sharp increase of wind
leads to a new quasi-equilibrium of spectrum with the increased forcing. However,
in itself the spectral evolution provides only statistically averaged characteristics
of the field (e.g. significant wave height, steepness, position of the spectral peak,
etc), and does not reveal changes in the probability of anomalously large, freak
waves. To address this question one also needs to find the probability density
function of the height elevations, or, as an intermediate step, dynamics of higher
moments of surface elevation such as skewness and kurtosis. An important feature
of the gKE is that along with the spectral evolution, it also provides the dynamical
component of kurtosis, which is linked to the real part of the same fourth order
cumulant whose imaginary part determines the spectral evolution. The second
constituent of kurtosis—the bound harmonic kurtosis can also be found in terms
of the spectrum n.k; t/ [13]. The skewness can be also expressed in terms of n.k; t/
[13]. Thus, expressing the higher moments as functions of the spectrum, we can
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obtain the probability density function (p.d.f) of the surface elevation, which is
the key characteristics of the field evolution from the freak wave perspective. A
disproportionally large share of studies of freak waves is concerned with narrow
band spectra [14, 16], which is relevant for nonlinear optics but is questionable for
oceanic water waves. Here we consider only broadband wave fields with the spectral
width sufficient for the kinetic description to work, typical of oceanic conditions.

The paper is organised as follows. In Sect. 2, we present a brief review of the
assumptions employed in the derivation of the two kinetic equations: KE and gKE.
In Sect. 3, the numerical algorithm for the gKE is discussed in detail. In Sect. 4, we
show the results of the simulations of the spectral evolution under constant wind,
and perform the comparison with the classical KE. Section 5 discusses examples of
wave field evolution forced by rapidly changing wind. Section 6 considers the effect
of periodic remixing of phases in the numerical simulations of the gKE. Section 7
provides the conclusions and discussion.

2 Theoretical Background

Consider a random field of potential waves at the surface of ideal incompressible
fluid of infinite depth. The non-potential effects, which are always present due to
wind, are assumed to be in the higher orders. The classic Hasselmann equation

@n0
@t

D 4�

Z
T20123 f0123ı0C1�2�3ı.!0 C !1 � !2 � !3/ dk123 C Sf ; (2)

is valid as long as the interest is confined to slow O."�4/ evolution. Here ni � n. ki/

is the spectral density of wave action at wavenumber ki (second-order correlator),
f0123 D n2n3.n0 C n1/� n0n1.n2 C n3/ and Sf is a forcing/dissipation term.

Virtually all studies of long-term evolution of realistic broadband wind wave
spectra are based on (2). There are several approximations involved in its derivation.
Here, we present only a brief review; a detailed discussion can be found e.g. in
[15, 18]. First, it is assumed that a wave field is statistically homogeneous in space,
which implies

hb.k; t/b�.k1; t/i D n.k/ı.k � k1/ � nkı01: (3)

where b.k; t/ is the (deterministic) complex amplitude at wavevector k and angular
brackets denote ensemble averaging.

The second crucial assumption is quasi-Gaussianity of the wave field. In the
zeroth approximation in " a free wave field has Gaussian statistics, for which all odd-
order correlators vanish, and the fourth-order correlator decomposes into products
of pair correlators,

J.0/0123ı0C1�2�3 D hb�
0b

�
1b2b3i D n0n1 .ı0�2ı1�3 C ı0�3ı1�2/ : (4)
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In the next approximation in " correlations due to resonant nonlinear interactions
result in deviations from Gaussianity and manifest themselves in a non-zero fourth-
order cumulant J.1/0123. The essential hypothesis is that the wave field is presumed
to remain quasi-Gaussian over the timescale of evolution, that is, for all times
the cumulant J.1/0123 should remain small compared to J.0/0123. By virtue of the same
approximation, cumulants of orders higher than four are neglected. Then the
differential equation for the cumulant J.1/0123 is obtained in the form

�
i
@

@t
C�!

�
J.1/0123 D �2T0123f0123; (5)

where �! D !0 C !1 � !2 � !3, and f0123 D n2n3.n0 C n1/ � n0n1.n2 C n3/. If
the evolution of a wave field is assumed to depend only on slow time �t, so that
�=�! � 1, then an approximate solution to (5) for large time is obtained in terms
of generalised functions

J.1/0123.t/ D �2T0123
�

P

�!
C i�ı.�!/

�
f0123.t/; (6)

where P stands for “principal value”. Together with the equation for the evolution
of n0

@n0
@t

D 2Im
Z

T0123J
.1/
0123ı0C1�2�3 dk123: (7)

this leads to the Hasselmann equation (2). Here we’ve omitted the forc-
ing/dissipation term Sf .

Therefore, the third crucial assumption is quasi-stationarity: a wave field evolves
slowly (it is commonly assumed that � 
 "4 while�! for four-wave interactions is
O."2/), and a large-time limit is taken. The latter implies that the approach is only
applicable to wave fields evolving for a long time under slowly-varying conditions
(no faster than the slow O."�4/ implied for the wave field itself).

The assumption of quasi-stationarity is in fact very restrictive. A wave field can
be driven out of equilibrium by a number of factors, and there is no reason to assume
a priori that it will evolve on the O."�4/ timescale. Besides that, wind forcing in
natural conditions is known to be variable on all timescales.

If we drop the assumption of quasi-stationarity, that is, include faster variability
of statistical moments of a wave field, we should use, instead of (6), the exact
solution to (5) in the form

J.1/0123.t/ D 2iT0123

Z t

0

e�i�!.��t/f0123 d� C J.1/0123.0/e
i�!t; (8)
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where J.1/0123.0/ is the initial value of the cumulant. This leads to the generalized
kinetic equation (gKE) derived in [1]

@n0
@t

D 4Re
Z (

T20123

�Z t

0

e�i�!.��t/f0123 d�

�

� i

2
T0123J

.1/
0123.0/e

i�!t

)
ı0C1�2�3 dk123 C Sf : (9)

Various properties of this equation were thoroughly discussed in the review [18]. In
the next section, we consider the numerical algorithm which we employ to simulate
wave field evolution with the gKE.

3 Numerical Algorithm

Development of a numerical algorithm for the Hasselmann equation has a long
history that spans over about 50 years. Despite considerable effort and substantial
progress in computational resources, the numerical simulation of the equation is
still considered to be difficult and time-consuming, and therefore impractical for
implementation in operational wave models. The main difficulty lies in the fact that
the integrand in the Hasselmann equation is specified at the resonant surface, which
has a very complex functional form.

From the point of view of numerics, gKE (Eq. (9)) at first glance looks much
more complicated than the KE (Eq. (2)). First, it is not restricted to resonant surface,
but formally includes all resonant and non-resonant interactions (although it is
reasonable to assume that only the interactions that are not too far from the reso-
nance surface contribute to the spectral evolution). Although this fact dramatically
increases the number of interactions that need to be considered, they can be treated
in parallel, efficiently utilizing the advantages of modern supercomputers. (We note
that at this time, we are not aware of a parallel algorithm for computation of the
nonlinear interaction term of the Hasselmann equation).

Second, the gKE is nonlocal in time, so that the evolution of the spectrum
depends on the time integration over the previous history of evolution, starting from
the initial moment when the value of cumulant J.1/0123.0/ is prescribed as the initial
condition. However, the gKE can be solved iteratively. On each time step, the value
of J.1/0123 is computed according to (8) and taken as the new initial condition, so that
the time integration is performed over one timestep only.

Therefore, we adopt the following strategy. First, we specify a computational
grid !min � ! � !max and �min � � � �max, where ! is frequency (it is convenient
to have frequency spaced logarithmically) and � is angle. For each three grid points
with wavevectors k1, k2, k3, a fourth wave is found as k4 D k1 C k2 � k3. Since k4
generally does not coincide with one of the grid points, bilinear interpolation is used



Water and Optical Waves 165

to find the corresponding amplitude. All interaction coefficients are pre-calculated,
stored and distributed evenly across the parallel processors. The initial condition for
J.1/0123.0/ is taken as zero; this choice is referred to as “cold start”. Then, the right-

hand side of gKE (9) and the value of J.1/0123 on each timestep according to (8) are

computed, and J.1/0123 is used as the new initial condition on the next timestep. We
employ the standard Runge-Kutta-Fehlberg time-stepping algorithm with automatic
step choice. Since almost all computations are performed in parallel, the algorithm
has a nearly perfect scalability (that is, the computational time for each timestep is
nearly inversely proportional to the number of parallel processors used).

4 Simulations with Constant Wind

In order to test and validate the new numerical algorithm for the gKE we carry out
simulations in parallel with the classic WRT algorithm for the KE. First we present
a few simulations of a wave field evolution under a constant wind, i.e. when the
gKE and the KE are both applicable and are expected to give essentially the same
evolution. In both cases, the employed computational grid has 101 logarithmically
spaced points in the range 0:5 � ! � 3 and 31 uniformly spaced angles �7�=9 �
� � 7�=9. For the gKE simulations, all interactions satisfying �!=!min � 0:25,
where !min is the minimum frequency of waves within the interacting quartet, were
taken into account. Thus, the algorithm accounts for all resonant and approximately
resonant interactions allowing a large mismatch. The total number of interactions
exceeds 3 � 109. Time stepping is performed by Runge-Kutta-Fehlberg algorithm
with absolute tolerance 10�10 and timestep limited from above by approximately
1=3 characteristic wave period. Initial conditions were specified as the spectra
parameterised by Donelan et al. [6] for 2 � U10=cp � 6, where cp is the phase
speed of the initial spectral peak, in the form

E.!/ D 4�2
˛g2

!5
.!=!p/ exp

h
� �!=!p

	�4i
�

exp
h
�.!=!p�1/2=.2
2/

i
D!.�/; (10)

where !p is the frequency of the spectral peak, and the spectral parameters ˛, � and

 are linked to the inverse wave age parameter U10=cp, with U10 being the wind
speed in the mean direction of wave propagation at the 10 m height. The parameters
have the following values [6]

˛ D 0:006.U10=cp/
0:55


 D 0:08
�
1C 4=.U10=cp/

3
�

� D


1:7 for 0:83 < U10=cp < 1;
1:7C 6:0 lg.U10=cp/ for U10=cp � 1
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The directional spread has the form

D!.�/ D 1

2
ˇsech2.ˇ�/; (11)

where the mean wave direction corresponds to � D 0, and

ˇ D
8<
:
2:61.!=!p/

1:3 for 0:56 < !=!p < 0:95;

2:28.!=!p/
�1:3 for 0:95 < !=!p < 1:6;

1:24 otherwise:

Wind forcing is according to [10]:

Sinp D �.k/n.k/;

�.k/ D 0:12
�a

�w
!.� � 1/2 for 1 < � < 7:4

and zero otherwise, where

� D 0:85
U10
cph

cos �;

�a=�w is the ratio of air and water densities, and cph is the wave phase speed.
One example of the results for U10=cp D 5 is shown in Fig. 1 (we will omit the

subscript at U10 in the remainder of the paper). There is very little difference in
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Fig. 1 Evolution of the energy spectrum E.!/ with time, under constant wind forcing with initial
U=cp D 5. Spectra are plotted every 100 characteristic periods, gKE (blue curves) vs KE (dashed
green curves)
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Fig. 2 Evolution of various spectral characteristics for simulations with constant wind, with wind
speed in the range 2 � U=cp � 6, where cp is the initial phase speed of the spectral peak. Blue
curves: gKE, green curves: KE. Numbers indicate the wind speed U=cp . (a) amplitude of the peak
(b) peak wavenumber (c) wave steepness (d) directional spread �m (second moment of directional
distribution

the spectral evolution obtained with both equations. The energy spectrum follows
the familiar route of self-similar evolution under a constant wind, with the spectral
slope close to the theoretically predicted angle !�11=3 [22]. In Fig. 2, we show the
evolution of a number of spectral characteristics for different wind speeds, both
for the gKE and the KE: amplitude and wavenumber of the spectral peak, wave
steepness and the directional spread (the average of the second-order moment of
directional distribution), defined as

�m D �2.k/; �2.k/ D
 Z �=2

0

�2D.k; �/ d�

!1=2  Z �=2

0

D.k; �/ d�

!�1=2
;

where D.k; �/ is the angular distribution of the spectrum [11]. All characteristics
demonstrate very close behaviour and tend to the same known asymptotics. The



168 S.Y. Annenkov and V.I. Shrira

only considerable difference is seen in the evolution of the directional spread, which
is noticeably slower in the case of the gKE, for all wind speeds.

One of the important features of the gKE is that it also allows one to obtain the
evolution of higher moments of the surface elevation along with the evolution of the
spectrum. The fourth moment of the surface elevation �

m4 D h�4i D 3

2
Re
Z
.!0!1!2!3/

1=2J.1/0123 dk0123

when the departure from gaussianity is small can be presented as a sum of two
components: the first, m.d/4 , is due to wave resonant interactions and the second—
due to wave field bound harmonics. In the context of freak wave predictions the
kurtosis, an appropriately normalized and centred fourth moment, is a more telling
characteristics of the field departure from gaussianity. Its component due to wave
interactions called “dynamical kurtosis”

C.d/4 D m.d/4 =m
2
2 � 3; where m2 D

Z
!0n0 dk0

represents a weighted integral of ReJ.1/0123. When we simulate field evolution using

gKE we find the correlator J.1/0123 at each time step. Thus, the dynamical kurtosis is
conveniently obtained along with the spectral evolution (which, according to (9),
is linked to ImJ.1/0123). Note that while the spectral evolution depends only on the
interactions close to resonance, all resonant and non-resonant interactions contribute
to kurtosis. Therefore, in reality it may be necessary to add a certain correction. This
is illustrated in Fig. 3, where the evolution of C.d/4 obtained along with the spectrum

is shown together with the corrected C.d/4 , obtained using all the interactions. In what

follows only the corrected C.d/4 is used.

In Fig. 4, we show the evolution of C.d/4 for a wide range of wind speeds. We
choose “cold start” as initial condition, hence the value of the kurtosis is initially
zero, then there is a rather sharp spike, depending on wind speed, although even
for the high winds the value of C.d/4 does not exceed 0.05. Then the dynamical
kurtosis appears to approach a universal curve, remarkably, irrespective of the wind.
The initial sharp spike is due to the chosen initial condition: although Donelan’s
parametrization is close to quasi-equilibrium, it does not quite coincide with it.

The other component of non-gaussianity is due to bound harmonics, and can be
calculated from the spectrum, if the dynamic non-gaussianity is small, i.e., if the
dynamical kurtosis C.d/4 � 1. Second moment has the form

�2 D h�2i D
Z
!0n0 dk0 C

Z �
A 2
0;1 C B2

0;1 C 2C0;0;1;1
	
!0!1n0n1 dk01

D
Z
!0n0 dk0
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Fig. 3 Evolution of dynamical kurtosis for U=cp D 5: value obtained along with simulations
(blue) and using all resonant and non-resonant interactions (green)
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The second integral in the right-hand side cancels due to symmetry [2]. Third
moment and fourth moments have the form (see [2] for details)

�3 D h�3i D 3

Z
.A0;1 C B0;1/!0!1n0n1 dk01

�4 D 3

Z
!0!1n0n1 dk01 C 12

Z
J

.4/
012!0!1!2n0n1n2 dk012

Then, the bound harmonic components of skewness and kurtosis are

C.b/3 D �3

�
3=2
2

; C.b/4 D �4

�22
� 3:

Coefficients were derived by Janssen [13].
In Fig. 5, we show the evolution of bound harmonics kurtosis C.b/4 for different

wind speeds. Bound harmonics kurtosis is an integral characteristic of the spectrum,
so it depends on wind, with approximately quadratic dependence on wave steepness.
Evolution of the skewness is shown in Fig. 6 and is similar (but the dependence on
the steepness is approximately linear in this case).
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Fig. 5 Evolution of the bound harmonics kurtosis C.b/4 for various wind speeds U=cp
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Fig. 6 Evolution of the skewness C.b/3 for various wind speeds U=cp

5 Sharp Changes of Wind Speed

In this section, we perform simulations with the gKE for the case of wind which
is, at a certain moment of time, instantly increasing to a larger value (from U=cp
equal to 2,3,4 to 5 or 7.5). Spectral evolution for the example with U=cp D 3

initially and then, after approximately 800 periods of evolution, instantly increasing
to U=cp D 7:5, is shown in Fig. 7. Before the increase, the spectrum is in the quasi-
stationary state, evolving according to the asymptotics shown in Fig. 2. After the
increase, the spectrum undergoes a rapid transition towards a new quasi-stationary
state, corresponding to the increased forcing. Figure 8 shows the evolution of the
dynamical kurtosis for all cases of instant wind increase. A sharp increase of forcing
leads to a very rapid increase of C.d/4 (for a few dozens of characteristic periods),
which then returns to the value close to the original one. Bound harmonics kurtosis
(Fig. 9) again follows the evolution of the total energy of the spectrum. The bound
harmonics kurtosis attains an order of magnitude larger values and thus to leading
order determines the departure from gaussianity. The relaxation of its peak values
to quasi-stationary curve happens on a much longer scale than the relaxation of the
dynamical kurtosis.

Figure 10 shows the evolution of the dynamical kurtosis for the case of squall
(wind instantly increasing to U=cp D 5 or 7 and then instantly decreasing to the
original value after 300 and 100 characteristic periods respectively). The dynamical
kurtosis starts decreasing, after a sharp maximum, before the end of the squall, but
the end of squall accelerates the decrease. Bound harmonics kurtosis (Fig. 11) after
the squall decreases to a new value close to its value before the squall and then
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Fig. 7 Evolution of the energy spectrum E.!/ with time, under constant wind forcing with initial
U=cp D 3, after about 800 periods instantly increasing by a factor of 2.5. Spectra are plotted every
22 characteristic periods
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Fig. 8 Evolution of the dynamical kurtosis C.d/4 , initially under constant wind forcing with initial
U=cp D 2; 3; 4, then instantly increasing to 5 or 7.5
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Fig. 9 Evolution of the bound harmonics kurtosis C.b/4 , initially under constant wind forcing with
initial U=cp D 2; 3; 4, then instantly increasing to 5 or 7.5

0.02

0.03

0.04

0.05

500 1000

t, periods
1500 2000 2500

C4

( )d

0

0.01

0.06

0.07

0

/ =2

/ =3

/ =4 / =7.5

/ =5

/ =7.5

/ =5

/ =7.5

/ =5
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Fig. 11 Evolution of the bound harmonics kurtosis C.b/4 , initially under constant wind forcing with
initial U=cp D 2; 3; 4, then instantly increasing to 5 or 7.5 and decreasing back to the initial value.
Red triangles mark end of squall

continues the slow decrease along a certain curve, irrespective of the value of wind
speed.

6 Wave Field Decorrelation

In contrast to simulations with in the KE, for numerical simulations of the gKE it is
necessary to specify an initial condition for the cumulant J.1/0123, which summarizes
the “previous” evolution of the spectrum. At the start of a simulation, this condition
is usually set at zero and is referred to as “cold start”. This means that the phases
are initially completely uncorrelated, and then small correlations arise during the
evolution. In water wave context the “cold start” is in fact an artificial unphysical
event, except for the case of wave tank modelling of the spectrum initially set up
by a wavemaker. However it is a natural initial condition in nonlinear optics for
waves propagating in a fibre [17]. It is assumed that the memory of the cold start
is lost after a few hundred periods of the evolution. The authors of [8] studied the
effect of setting J.1/0123 to zero periodically during the evolution, and found that it
has a considerable effect in the purely one-dimensional case where the spectral
evolution otherwise stops, but the evolution of the two-dimensional spectra is not
much affected. They suggested that periodical setting J.1/0123 to zero might be a way
to improve efficiency of simulation with the gKE. In order to better understand
how the setting J.1/0123 to zero affects the evolution of the spectrum and of the
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Fig. 12 Evolution of wave steepness for U=cp initially equal to 5: with the decorrelation of phases
every 50 periods (red curve), every 300 periods (green curve), and without decorrelation (blue
curve)

dynamical kurtosis, we repeat the numerical experiment shown in Fig. 1 with setting
the cumulant J.1/0123 to zero every 50 and every 300 characteristic periods. This is
equivalent to the periodic decorrelation of the phases of the interacting waves. The
effect is mostly noticeable in the evolution of the wave steepness, which is shown
in Fig. 12. The remixing of the phases leads to an instant stop of the energy flux
to high wavenumbers, which puts the spectral evolution to a stop and results in a
fast, within a dozen periods, small but noticeable increase of the wave steepness,
which then returns to its original evolution. The effect of the phases decorrelation is
more pronounced in the evolution of the dynamical kurtosis, shown in Fig. 13. The
kurtosis is set to zero by the remixing of the phases, but then, approximately over
a hundred wave periods, returns to the original evolution. Therefore remixing could
be justified only for the situations when the external conditions are steady and one is
interested in average value of kurtosis over timescales of thousands of wave periods.
The effect of mixing on evolution of spectra is hardly visible and therefore is not
shown. The overall conclusion is that for the simulations of spectra periodic phase
decorrelation is harmless (unless we are interested in the high-frequency part of the
spectrum). However, we note that this conclusion was made on the basis of our gKE
simulations of wave field evolution with a simplified wind forcing. An increase in
the tail of the spectrum means increase of surface roughness and, hence, increase of
wind forcing. Therefore a caution is advised in using periodic phase decorrelation
even when the only aim of modelling is to simulate the spectral evolution. The same
conclusion holds if the aims of the simulations include also modelling the evolution
of the dynamical kurtosis.
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7 Concluding Remarks

In this paper, we outlined new opportunities arising in modelling of transient
sea states with the use of the gKE employing a new efficient parallel algorithm.
We showed samples of numerical simulation of wind waves with the gKE, and
performed a number of simulations for the case of constant and instantly changing
wind. Simulations for the constant wind were compared with the corresponding
simulations of the classic Hasselmann equation, using the well-established WRT
algorithm. For the case of constant wind forcing, for which the KE and the gKE are
both applicable, we have validated the new gKE algorithm by the direct comparison
with the simulations performed with the KE. We have performed simulations with
the gKE for instantly increasing wind forcing, and for the case of squall, where
wind forcing increases and then decreases to the initial value. We demonstrated
joint evolution of spectra and skewness and of both components of kurtosis. For
the steady wind conditions the important new and unexpected result is that the
dynamical kurtosis (which for a given shape of the spectrum is proportional to the
square of steepness) tends to evolve along a universal curve which is practically
independent of wind, while, as demonstrated in Fig. 2c, the integral wave steepness
strongly depends on wind.

There are numerous implications for modelling short-lived transient sea states.
First, since at present there are no tools for such modelling, it is crucial that we have
demonstrated that it is indeed feasible to simulate transient wave field evolution
using the gKE. The simulations results proved to be robust. The algorithm is highly
parallel and scalable, and the unrelenting advance of computing capabilities makes
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it a plausible candidate to replace with time the KE as the main tool of wave
modelling.

We stress that the gKE is not just a better version of the KE. It is an essentially
different equation with its own properties discussed in [18] and peculiarities
showing up in the simulations. The first key difference is that in contrast to the KE,
two initial conditions are required: n.k; 0/ and J.1/0123.0/. Although having n.k; 0/ it

is possible to find J.1/0123.0/ approximately, we for simplicity used the cold start initial
condition. What we have demonstrated here for the first time, is that approximately
a hundred periods after the cold start its effect in all wave field characteristics,
including the kurtosis, is forgotten. This conclusion is closely linked to the issue
of the legitimacy of periodic randomization of phases employed by Gramstad and
Stiassnie [8], which promises certain gains for the gKE simulations. We have found
that for simulations of spectral evolution a periodic phase randomization is indeed
justified, albeit with a few caveats mentioned in Sect. 6. Remarkably, the dynamical
kurtosis evolution returns to the same curve after about a hundred periods after each
randomization (see Fig. 13). We stress that the curve appears to be independent of
wind. Since the bound harmonic kurtosis and skewness are functions of the spectrum
n.k; t/, the conclusion equally applies to these characteristics and, hence, to the
pdf of wave heights which is a function of kurtosis and skewness. Note that the
anomalous bounce of kurtosis after the cold start shown in Fig. 4 is not an artifact
caused by randomization, but is caused by the fact that the initial spectra are not
in equilibrium with wind forcing and, hence, rather far from the quasi-equilibrium
state. A comparison between Figs. 4 and 13 clearly demonstrates this point.

The simulations of squall presented here serve dual purpose. They demonstrate
the capability of the gKE to capture short-lived events and give us for the first time
an idea how the spectra and the higher moments evolve under such circumstances.
We also advance in addressing the question of quantifying the changes in the
likelihood of freak waves. The simulations demonstrate a possibility of quite
significant short-lived jumps of kurtosis. Translating these results into quantifying
the corresponding changes of pdf and increase of likelihood of freak waves is
straightforward but goes beyond the scopes of the present work and will be
considered in a dedicated work.
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Rogue Waves in Random Sea States:
An Experimental Perspective

Alessandro Toffoli

Abstract Despite being rare events, rogue waves have been recorded in the ocean.
Here the current knowledge on wave statistics and the probability of occurrence
of rogue waves is revisited from an experimental perspective. Starting from the
instability of uniform wave packets to side band perturbations, the most accredited
generating mechanism, the appearance of rogue waves in random wave fields is
discussed. As an initial condition, unidirectional wave propagation is considered.
Under these circumstances, wave instability results in a substantial deviation from
Gaussian statistics. Directional spreading of wave energy, which characterizes
realistic oceanic waves, attenuates the effect of wave instability weakening non-
Gaussian properties. It is demonstrated, however, that the interaction between waves
and an opposing current can sometimes act as a catalyst for modulational instability.
This triggers the formation of rogues waves even in directional sea states, where
rogue waves are the least expected.

1 Introduction

Large oscillations of the water surface with exceptional height and abnormal shape
are normally known as rogue (or freak) waves. Although a consensus on a definition
has never been reached, a rogue wave is normally identified by a crest-to-trough
height exceeding 2–2.2 times the significant wave height Hs (the average of the
highest 1/3 of the waves in a record), or a crest height C exceeding 1.2–1.3
times Hs, or a combination of both [1–3]. Possible generating mechanisms include
simple linear focussing, bottom topography, wave-current interaction and high-order
nonlinear wave-wave interactions [1, 2]. Despite being an infrequent phenomenon
(rogue waves have been believed to be a sailor’s myth until not long ago!), such
extreme events have been recorded in the ocean for the past decades [4–7] and
blamed for causing a number of ship accidents worldwide [5, 8].
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Knowledge of the physics and statistics (in the form of the probability density
function, p:d:f :) of surface gravity waves is essential in ocean engineering. Features
of the most extreme wave expected within the life cycle of the structure is indeed
needed for establishing structural responses and ensuring structural integrity. For
offshore platforms, moreover, extreme wave probability is vital to define the air gap
between the highest elevation of the water surface and the lowest deck.

Ships and offshore platforms are designed to withstand sea states for a specified
return period, i.e. a time period during which a hazard appears on average only
once. The sea state is expressed in the form of a directional spectral density
function E.! i; # l/ [9], where ! i is the angular frequency and # l is the direction
of propagation. Ships refer normally to a 25-year sea state, while offshore structures
are generally designed for a 100-year return period. Furthermore, Norwegian
offshore standards [10] impose even stricter requirements for air gaps to withstand
a 10,000-year sea state. The design spectrum, however, only provides an average
description of the sea state, but it does not contain any information on the
instantaneous position of the water surface. Therefore, short-term statistics for
individual wave characteristics (heights, crests and troughs) has to be further derived
with theoretical or semi-empirical probability density functions with the design
spectrum as input [11].

Provided the waves are of small amplitude (i.e. gently sloping), a rough
approximation of the water surface elevation can be calculated as a linear solution
of the Euler equations for random, directional, surface gravity waves [12]:

�.1/.x; t/ D
N!X
iD1

M#X
lD1

ail cosŒki.x cos# l C y sin# l/� !i t C "il�; (1)

where t is time, x=.x; y/ is the position vector and " il uniformly distributed random
phases. The wavenumber ki is related to frequency through the linear dispersion
relation ! i D p

gki tanh.kih/. N! is the total number of frequencies and M# is the
total number of directions considered in the model. The spectral amplitudes ail are
calculated as follows:

ail D a.! i; # l/ D p
2E.! i; # l/�!�#: (2)

Note that Hasselmann [13] also considered random variations of the amplitudes to
define a proper statistical framework. However, if a directional sea is simulated, the
addition of different directional components, each with a random phase at the same
frequency, automatically restores the statistical variability of the amplitudes [14].

For linear waves (1), the statistical properties of the water surface elevation can
be approximated by the Normal (Gaussian) distribution. Statistics of wave heights,
crests and troughs can be conveniently estimated by the Rayliegh density function
[11]. For realistic oceanic conditions, however, the wave steepness kp Hs=2 (where
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kp is the wavenumber associated to the spectral peak period) is not small enough to
ensure the hypothesis of small amplitude. As a result, waves exhibit sharper and
higher crests and flatter and shallower troughs than the linear model (1) would
predict. This asymmetry is the most obvious manifestation of nonlinearity in the
ocean [15]. It can be modelled by adding a second-order, phase-locked, correction
to the linear solution (1). Following the work by Sharma and Dean [16], a second-
order correction for a generic random, directional sea state can be written as

�.2/.x; t/ D 1

4

N!X
i;jD1

M#X
l;mD1

ailajm
h
K�
ijlm cos.'il � ' jm/C KC

ijlm cos.' il C ' jm/
i
;

(3)

where ' il D ki.x cos �lCy sin �l/�!itC"il, and KC
ijlm and K�

ijlm are the coefficients of
the sum and difference contributions [14, 16–18]. For completeness, the analytical
expressions of the interaction kernels K˙ are reported in Appendix. Note that
KC generates high frequency components with local maxima for every crests and
troughs in the linear signal and it is responsible for the sharpening of crests and
flattening of troughs. K�, on the other hand, generates a long frequency component
that results in a set down of the mean water level under the most energetic groups
(see, for example, Fig. 1 in [14]). Note, however, that the contribution of K� is
reversed, if the directional spreading of the wave spectrum is very broad [18].

Fig. 1 Example of the probability density function p:d:f :.x D x0/ of water surface elevation in
a sea state with Hs D 6:5m and Tp D 10 s (kpHs=2 D 0:13); Gaussian density function (solid
line); second-order surface elevation (dots). Left panel shows probability levels on a linear scale
to highlights the skewness; the right panel presents probability levels in a logarithmic scale to
highlights deviation at the tails of the distribution. The surface elevation � is normalised by means
of the standard deviation 
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For an arbitrary input spectrum, the p:d:f : of the second-order surface elevation
� D �.1/ C �.2/ can be inferred from Monte Carlo simulations of Eqs. (1) and (3)
(see details in [14, 18]). An example p:d:f : is presented in Fig. 1, for a sea state with
significant wave height Hs D 6:5m and peak period Tp D 10 s. This automatically
defines a wave steepness kp Hs=2 D 0:13. Second-order nonlinearity induces a
weak, and yet notable, deviation from Gaussian statistics. The vertical asymmetry
of the water profile, i.e. sharp crests and flat troughs, positively skews the p:d:f :
(see left panel in Fig. 1). Furthermore, the increase of crest heights and reduction of
trough depths modify the tails of the p:d:f :, which start deviating from the Gaussian
distribution at probability levels as low as 10�2 (see right panel in Fig. 1). It is
important to mention that, on average, the increase of crest heights compensates
the shallowing of wave troughs. Therefore, there is no significant effect on wave
height statistics, which satisfy the Rayleigh distribution also at second-order.

Under a unidirectional, narrow banded approximation (i.e. the wave energy is
confined along one specific direction of propagation and concentrated around a
small frequency band nearby the spectral peak), second-order-based distributions
for wave crests and troughs can be derived theoretically (see, for example, [19–21]).
Density functions for more general unidirectional and directional spectra were
obtained by fitting simulated distributions with a two-parameter Weibull density
function and then parameterising the coefficients of the fitted distributions. These
semi-empirical functions are generally known as the Forristall distributions [14]
and are applied in standard design practice. An example of the probability of
exceedance for the wave crests, S.C > C0/, for a unidirectional sea state (as
derived in [14]) is presented in Fig. 2. As a reference, the Rayleigh distribution is
also reported. It is evident that second-order has a substantial effect on the tail of
the wave crest distribution. Compared with linear waves (Raleigh distribution), the
exceedance probability for extreme and rogue wave crests (C > 1:2 Hs) increases
by one order of magnitude. It is important to mention that the strength of second-
order nonlinearity is directly proportional to the wave steepness. But it is slightly
weakened by the wave directional spreading in infinite water depths and slightly
strengthened by directionality in finite water depths [14, 18].

Second-order theory matches field data reasonably well [14, 18]. Nevertheless,
recent hurricanes in the Gulf of Mexico have remarked a persisted vulnerability of
marine structures to extreme waves [22]. During severe storms, in fact, the wave
steepness may not be sufficiently small to neglect nonlinearity beyond second-
order. If higher-order nonlinearity develops, uniform wave trains may destabilize
under the effect of side band perturbations, provided the wave train is sufficiently
steep and the side bands are sufficiently narrow banded [23–25]. This may force an
individual wave to grow up to a maximum of three times its initial amplitude at the
expense of the surrounding waves. The mechanism, generally known as Benjamin-
Feir or modulational instability [26], is the most accredited for the generation of
rogue waves in the ocean [1, 2]. An example of modulational instability of a regular
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Fig. 2 Example of wave crest distribution in the form of the probability of exceedance S.C=Hs/
in a sea state with Hs D 6:5m and Tp D 10 s (kpHs=2 D 0:13): Rayleigh distribution (dashed
line); Forristall (second-order) distribution [14] (solid line)

wave packet in a water wave tank is reported in Fig. 3. The initial configuration is
defined by a carrier wave of amplitude a0 and two side bands of amplitudes b˙. The
overall steepness of the packet is k0 � .a0 C b˙/ D 0:1, where k0 D 6:28m�1 is
the wavenumber of the carrier wave. The side bands are located to a wavenumber
k0 ˙ �k such that 11 individual waves fall within the perturbation. This specific
configuration ensures that Benjamin-Feir Index [23, 24], a ratio of nonlinearity
(wave steepness) and dispersion (bandwidth), is O.1/, and hence that the wave
packet is indeed unstable. As waves propagate, energy is exchanged (reversibly)
from the carrier to the side bands in an asymmetric way (cf. [27]). The wave
amplitude quickly grows and doubles its initial value after a distance of 20–25
wavelengths from the generation.

Modulational instability remains active in random wave fields [28] and may
lead to strong deviations from Gaussian and second-order wave statistics even
for steepness kp Hs=2 as low as 0.1 [29–35]. This, however, only occurs if the
wave spectrum is sufficiently narrow banded both in the frequency and directional
domain. For broad directional sea states (typical for wind-generated waves), the
effect of modulational instability ceases and rogue wave probability remains within
second-order predictions.

Interestingly enough, nevertheless, the presence of a background current can
trigger the formation of extreme waves, sustaining deviations from benchmark
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Fig. 3 Evolution of a regular wave packet composed by a carrier wave of amplitude a0 and two
side band perturbations of amplitudes b˙; the overall steepness k0 � .a0 C b˙/ D 0:1, where k0
is the wavenumber of the carrier wave; number of waves under the perturbation N D 5. Evolution
of surface elevation (a); evolution of wave spectrum (b); and wave amplification (c)

statistics also in directional wave fields (e.g. [36, 37]). It is known that wave
energy can be refracted and focused in space, leading to the formation of large
amplitude waves in regions of strong currents such as the Gulf Stream, the Kuroshio
Current and the Agulhas Current [8, 38, 39]. When propagating over a current with
adverse gradients in the horizontal velocity (i.e. an accelerating opposing current or
a decelerating following current), waves also undergo a transformation that shortens
the wavelength and increases the wave height [40, 41]. As a result, waves become
steeper, amplifying nonlinear processes [42–45]. Therefore, an initial wave whose
perturbation is stable (or weakly unstable) in terms of the modulational instability
may become strongly unstable, generating rogue waves also when they are the least
expected, because of a shift of the modulational instability band [37, 46–49]. An
example of current-induced instability of an otherwise stable wave packets is shown
in Fig. 4.

In the present chapter, the statistical properties of water waves are revisited from
an experimental point of view. Modulational instability and its impact on wave
statistics are discussed for directional sea states in the absence and in the presence
of a background current. Experimental data used herein were collected in the ocean
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Fig. 4 Evolution of a regular wave packet composed by a carrier wave of amplitude a0 and two

side band perturbations of amplitudes b˙; the overall steepness k0 �
q
a20 C bC2 C b�2 D 0:064,

where k0 is the wavenumber of the carrier wave; number of waves under the perturbation N D 11.
Evolution in the absence of current (U=cg D 0, where cg is the group velocity, in the left panel);
evolution in the presence of an opposing current (U=cg D �0:1, where cg is the group velocity, in
the right panel)

wave basin at Marintek (Norway) and in the directional wave basin at Plymouth
University (UK). In Sect. 2, an experimental model for nonlinear wave evolution in
the absence of background currents is discussed. Statistical properties are presented
and assessed against second-order predictions. Without loss of generality, the
analysis is limited to the wave crest distribution. In Sect. 3, the interaction between
waves and current and its effect on the wave crests distribution is shown. Concluding
remarks are presented in the last Section.

2 Wave Crest Distribution in the Absence of a Background
Current

2.1 Experimental Model

An experimental model of the nonlinear evolution of an initial, Gaussian, random
wave field was set up in the ocean wave basin at MARINTEK (Norway) [29, 30].
The facility is 70 m wide and 50 m long. The water depth is adjustable and it can
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reach a maximum depth of 10 m. For the purpose of the present experiment, the
water depth was fixed to 3 m. The basin is equipped with a directional wavemaker
composed by 144 individually controlled flaps along the 70 m side. Each flap is
0.434 m wide and hinged at a depth of 1.02 m below the water surface. The wave-
maker can generate directional seas within a wide range of directional distributions
of the energy (from purely unidirectional to broad directional conditions). A second
wavemaker is installed on the 50 m (lefthand). It was not operated and hence it acted
as a vertical wall. Beaches are deployed opposite to the wavemakers to absorb wave
energy. A schematic of the basin and the experimental set up is shown in Fig. 5.

The experiment model consisted in tracing the surface elevation as waves
propagate along the basin; no circulation of the body of water was imposed, i.e.
no current. Measurements of the water surface elevation were taken at different
distances from the wavemaker (and along the central axis) with resistance wave
gauges (see Fig. 5). Probes were held across the water surface by light tripods
laying on the bottom and deployed at 5 m intervals. A sampling frequency of 80 Hz
was applied. Three three-probe arrays were deployed to allow the reconstruction of
directional properties along the tank. An additional eight-probe array, arranged as a
regular heptagon plus a central probe, was also installed in the middle of the basin
to gather more detailed directional spectra.

Random waves were FFT–generated from an initial directional wave spectrum
E.!; #/ D S.!/D.#/ with 16,384 frequencies distributed between 0.0–10.0 Hz.
Complex Fourier amplitudes were calculated with their modules randomly chosen
from a Rayleigh distribution around the “target” spectrum. The phases were
randomly chosen from a uniform distribution between 0 and 2� .

Fig. 5 Experimental set up in the ocean wave basin at Marintek (Norway): waves only (not in
scale)
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The frequency spectrum S.!) was defined by the JONSWAP formulation [50].
The peak period was imposed to be Tp D 1 s, which corresponds to a dominant
wavelength of 1.56 m. Considering the depth of 3 m, deep water waves were thus
generated (kp h � 12, where h is the water depth). The Phillips parameter ˛
was set equal to 0.014. Two different values of the peak enhancement factor, � ,
were selected. This choice is twofold: it defines different degrees of nonlinearity as
measured by the wave steepness kp Hs=2 and dispersion as measured by the spectral
bandwidth ı! . For both cases, the Benjamin–Feir Index BFI D kpHs

p
2=2ı!

(see [51] for details on the calculation of the BFI) is approximately 1, meaning
rogue-wave-prone sea states. The values of the peak enhancement factor � as well as
the one of the wave steepness and Benjamin–Feir Index are summarized in Table 1.

The directional distribution D.#/ was defined by a cosN.# � #m/ function [9].
In order to consider different degrees of directional spreading, different values of
the spreading coefficient N were used, raging from almost unidirectional (very large
N) to directional (small N) conditions. The following values have been selected:
N D 1 (unidirectional), 840, 200, 90, 50, 24. To put this into perspective,
note that N D 24 corresponds to a relatively narrow swell [52]. Directional
distributions are shown in Fig. 6; a sech2 function is also added as reference for the
directional distribution of typical wind-generated wave fields (wind sea). Because

Table 1 Parameters of input
frequency spectra S.!/

Exp. ID Tp (s) Hs (m) � kpHs BFI

A 1:0 0:06 3:0 0:13 0:70

B 1:0 0:08 6:0 0:16 1:10

Fig. 6 Analytical form of the directional distribution as a function of angle # for different values
of the spreading coefficient N; the sech2 distribution is included are reference for wind generated
wave fields



188 A. Toffoli

the directional spreading has a stabilising effect on the wave field, the BFI in Table 1
lessens with the broadening of the wave spectrum (BFIDir D p

BFI2.1� R/, where
R D 0:5ı#=ı! with ı# being the directional width [53]). As an example,BFI D 1:10

in Table 1 drops to BFIDir D 1:01 for a directional spreading coefficient N D 840

and to BFIDir D 0:26 for N D 24.
For each input spectrum, four realisations (10 min each) of the random sea

surface were performed by using different sets of random amplitudes and phases.
The statistics of irregular wave fields generated in this way follow fairly well the law
of “natural” statistics of randomly chosen finite time series realizations of irregular
wave models with continuous spectra.

2.2 Evolution of the Wave Spectrum

The initial (input) spectral condition does not remain steady, but it varies slightly as
the wave field propagates along the basin. Records of significant wave height along
the basin show that a fraction of energy is loss (see Fig. 7). On average, Hs drops
by about 5 % and 9 % for the configuration in experiment A and B, respectively.
Although the present experiments were not specifically designed to study breaking

Fig. 7 Significant wave height as a function of the non-dimensional distance from the wavemaker:
experiment A (open triangle), experiment B (open circle)
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Fig. 8 Frequency wave spectra for experiment A (upper panels) and experiment B (lower panels)
at different distances from the wave maker (x=Lp D 3:1, x=Lp D 15:9 and x=Lp D 28:7)

dissipation, wave breaking occurred regularly, especially during the more energetic
and nonlinear tests in experimentB, justifying this energy loss (see [29, 54] for more
details).

The remaining wave energy is then redistributed from high to low frequencies,
producing the downshift of the spectral peak (i.e. the dominant wave becomes
longer). The evolution of the wave spectrum for different sea states is shown in
Fig. 8. This is already notable after an evolution of about 16 dominant wavelengths
(peak frequency drops by about 2 %) and becomes even more substantial further
down the basin (4 % and 6 % for experiment A and B, respectively). Note that the
downshift is consistent with numerical simulations in [55, 56], where a change of
the spectrum is already observed on the scale of the Benjamin–Feir instability [57]
as a result of quasi-resonant interactions.

2.3 Evolution of the Wave Crest Distribution

In the following, the evolution of the wave crest distribution is discussed as a
function of the normalized distance from the wavemaker (x=Lp, with Lp the peak
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Fig. 9 Evolution of the wave crest distribution for sea states with directional spreading coefficient
N D 1: experiment A (upper panels); experiment B (lower panels). Experimental data (markers),
Rayleigh distribution (dashed line) and Forristall distribution [14] (solid line) are shown

wavelength of the input wave spectrum). Wave crests C are extracted from recorded
time series at each gauge with a standard zero-crossing analysis. The significant
wave height at each probe is used as normalizing factor. Figures 9, 10 and 11 present
the probability of exceedance S.C=Hs/ at x=Lp D 3:1, 15.9 and 28.7, i.e. nearby the
wavemaker, middle basin and nearby the beach, respectively. As an example, only
sea states with directional spreading coefficient N D 1, 200 and 50 are shown.
The Rayleigh and the Forristall [14] distributions are included for benchmarking
linear and second-order wave statistics. Note that, for a more conservative estimate,
the two-dimensional Forristall distribution for unidirectional sea states is applied
throughout this discussion.

As soon as waves start propagating at the wavemaker, second-order harmonics
are generated. Regardless the initial spectral shape, the wave crest distribution at
x=Lp D 3:1 departs from the Rayleigh function and fits the second-order Forristall
distribution [14] as one would expect. For unidirectional sea states (N D 1), wave
conditions are the most favorable for the development of modulational instability.
As a result, the percentage of extreme and rogue waves in the records increases
quickly as the wave field propagates. As a result, the wave crest distribution
deviates substantially from the Forristall distribution [14]. Strongly non-Gaussian
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Fig. 10 Evolution of the wave crest distribution for sea states with directional spreading coef-
ficient N D 200: experiment A (upper panels); experiment B (lower panels). Experimental data
(markers), Rayleigh distribution (dashed line) and Forristall distribution [14] (solid line) are shown

characteristics are reached towards the end of the basin (x=Lp D 28:7) for the
less nonlinear cases in experiment A and approximately at the centre of the basin
(x=Lp D 15:9) for more nonlinear conditions in experiment B (Fig. 9). Overall, the
occurrence probability of rogue wave crests (C > 1:2Hs) is 0.003, which is one
order of magnitude greater than the Forristall distribution [14].

The broadening of the wave spectrum (i.e. energy is distributed over a range
of direction) somewhat weakens the effect of modulational instability on wave
statistics. The deviation from second-order wave statistics still remains significant
for sea state with N D 200 in experiment B, where S.C=Hs/ � 0:001 (Fig. 10),
but is less substantial in experiment A (S.C=Hs/ � 0:0005). For sufficiently broad
sea states, eventually, deviations from the Forristall distribution [14] cease (Fig. 10),
regardless the level of nonlinearity that is applied. In our experiment, this is already
clear for directional sea states as broad as N D 50, where the empirical distribution
fits the second-order crest distribution. In the absence of any forcing factors such as
a background current, these results substantiate a transition from strongly to weakly
non-Gaussian characteristics with the increase of the wave directional spreading.
For completeness, a summary of wave crest distribution for all directional sea states
considered herein is presented in Fig. 12.
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Fig. 11 Evolution of the wave crest distribution for sea states with directional spreading coef-
ficient N D 50: experiment A (upper panels); experiment B (lower panels). Experimental data
(markers), Rayleigh distribution (dashed line) and Forristall distribution [14] (solid line) are shown

Fig. 12 Wave crest distribution at x=Lp D 15:9 for all directional wave spectra
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3 Wave Crest Distribution in the Presence of a Background
Current

3.1 Experimental Model

The experimental model consisted in monitoring the evolution of waves, when
entering into a region of opposing current. Tests were carried out in the directional
wave basin of the COAST Laboratory at Plymouth University (see schematic in
Fig. 13). The facility is 35 m long and 15.5 m wide. The floor is movable and it
was set to a depth of 3 m. Similarly to the basin at Marintek (see Sect. 2), this
facility allows propagation in two horizontal dimensions and it is equipped with 24
individually controlled wave paddles for the generation of directional wave fields.
At the other end of the wavemaker, a convex beach is installed for wave energy
absorption. A background current is forced by a multi-pump recirculating hydraulic
system, which is capable of producing a water flow with speed (U) ranging from
0.03 to 0.4 m/s (both following and opposing the waves). Inlet/outlet are located on
the floor just in front of the wave pistons and the beach. For an opposing current
(i.e. propagating against the waves), the particular location of the outlet ensures a
gradual deceleration of surface velocity, while approaching the wavemaker. This, in
turn, ensures that waves are subjected to an adverse current gradient immediately
after being generated.

The evolution of the surface elevation was traced by 10 capacitance wave gauges
deployed at interval of 2.5 m, starting from the wavemaker and approximately 2.5 m
from the (left) side wall. Probes were operated at a sampling frequency of 128 Hz.
A propeller current-meter was used to monitor the average current velocity (over
a 1-min window). Longitudinal, transverse and vertical profiles of the horizontal
velocity are presented in Fig. 14. Records indicate a sharp gradient from 0 m/s to

Fig. 13 Experimental set up in the ocean wave basin at the University of Plymouth (UK): waves
and current (not in scale)
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Fig. 14 Average velocity in the wave basin at the University of Plymouth: longitudinal profile
(panel a); transverse profile (panel b); and vertical profile (panel c)

the regime speed within the first 2 m from the wavemaker. Towards the centre of the
basin, there is a slight deceleration (between 2 and 10 m from the wavemaker), while
the current sharply accelerates in the proximity of the centre (see Fig. 14a). Trans-
versely, the current remains stable. Additional 10-min time series of velocity were
gathered to monitor temporal oscillations with an ADV properly seeded. Over time,
the standard deviation was about 15 % due to long period oscillations of about 80 s.

Two different initial conditions were tested. In the first instance, a unidirectional
sea state with a low wave steepness was applied. To this end, a JONSWAP spectrum
with Tp D 0:7 s (hence wavelength Lp D 0:765m, group velocity cg D 0:55m/s
and relative water depth kph D 24:6), Hs D 0:015m and � D 3 was imposed at the
wavemaker. The resulting sea state is characterised by a wave steepness kpHs=2 D
0:062. Therefore, waves are expected to remain weakly non-Gaussian in the absence
of any current. To set a reference, the evolution of the input wave field was first
traced with no current. Experiments were then repeated with opposing currents at
the following nominal velocities: U D �0:02, �0:08, �0:13, and �0:19m/s.

A second test was carried out with a directional sea state. Again, a JONSWAP
spectrum was used to model the frequency domain and a cosN.#/ function was
applied for the directional domain. The spectrum was defined with Tp D 0:7 s,
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Hs D 0:03m and � D 3. The resulting wave field is characterised by steepness
kpHs=2 D 0:12. The directional spreading coefficient N was set equal to 50. This
condition is similar (but not identical) to the one in experiment A (see Sect. 2). In the
absence of a background current, the selected directional spreading ensures weak
non-Gaussian properties. Tests were conducted without current and then repeated
with opposing currents at nominal velocities of U D �0:02, �0:08, �0:13 and
�0:19m/s.

3.2 Evolution of the Wave Spectrum

The evolution of significant wave height, as a function of x=Lp, and of the wave
spectrum is presented in Figs. 15 and 16, respectively. In the absence of a current
(U=cg D 0), Hs remains fairly stable along the tank. Quasi-resonant nonlinear
interactions (modulational instability) have a marginal effect, resulting in only a
weak spectral downshift (see examples of spectral evolution in Fig. 16) [58–60].
Note that the downshift is slightly more accentuated in the directional sea state
(right panel in Fig. 16) than the one observed in the unidirectional sea state, due
to the higher initial wave steepness. Wave breaking was not detected.

Fig. 15 Significant wave height as a function of the non-dimensional distance from the wave-
maker: unidirectional wave field (open triangle); directional wave field (open circle)
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Fig. 16 Frequency wave spectra for experiment A: x=Lp D 3:1 (dashed-dotted line); x=Lp D 15:9

(dashed line); x=Lp D 28:7 (solid line)

When waves enter into a region of adverse current gradient, an immediate
increase of significant wave height takes place (Fig. 15). Further growth of Hs was
detected further down the basin due to the variability of the current field. However,
no breaking dissipation is observed. This does not exclude that some individual
waves may sporadically break, though. The opposing current also forces the
wavelength to compress, increasing the dominant wavenumber. The transformation
that waves undergo implies an increase of the steepness and hence nonlinearity: as
an example, kpHs=2 grows up to about 0.1 for U=cg � �0:15, while kpHs=2 � 0:16

for U=cg � �0:35 in unidirectional sea states. As a consequence, a more substantial
(and quicker) downshift of the spectral is observed as waves propagate along the
basin (see Fig. 16). For the less nonlinear unidirectional sea state, peak frequency
drops by about 6 %, while it drops by about 10 % in the directional sea state.

3.3 Evolution of the Wave Crest Distribution

As an example, the evolution of the wave crests distribution along the basin with
and without water circulation is presented in Fig. 17 for the unidirectional case only.
The Rayleigh and the Forristall distribution [14] are presented for reference too.
The initial conditions of the input sea state were chosen to suppress nonlinearity
of order higher than second in the absence of current. Therefore, as the wave field
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Fig. 17 Evolution of the wave crest distribution for unidirectional sea states without (upper
panels) and with current (lower panels): experimental data (open circle), Rayleigh distribution
(dashed line) and Forristall distribution [14] (solid line)

propagates, the wave crest distribution does not depart (at least not significantly)
from the second-order Forristall distribution [14] (see upper panels in Fig. 17).

The interaction with current generates an increase of wave steepness. As an
immediate result, this changes the intensity of second-order nonlinearity. The
Forristall distribution [14], therefore, shows a more notable deviation from the
Rayleigh function as wave steepness changes along the basin (see lower panels in
Fig. 17).

The increase of wave steepness is strong enough to also trigger higher-order
nonlinear mechanisms (modulational instability). In this respect, the wave crest dis-
tribution shows a clear dynamical behaviour, deviating strongly from the Forristall
distribution [14]. After x=Lp D 32:7, the empirical distribution shows that rogue
wave crests would occur with a probability of 0.005. This is more than one order of
magnitude greater than what observed in the absence of the current (and predicted
by the second-order theory).

As a summary, Fig. 18 reports the wave crest distribution at the gauge where
maximum deviation from second-order wave statistics was observed for different
current velocities. This result substantiates the key role of the current in destabilizing
the wave field and enhancing the rogue wave probability. It is interesting to note
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Fig. 18 Wave crest distribution for unidirectional sea states at different current speed and at probes
of maximum deviation from benchmark distributions: experimental data (open circle), Rayleigh
distribution (dashed line) and Forristall distribution [14] (solid line)

that strong departures from the Forristall distribution [14] already occurs for current
speed as low as U=cg D �0:04 and maximizes for U=cg D �0:24. For a stronger
current (U=cg D �0:35), the deviation is somewhat reduced. Although breaking
dissipation did not played a significant role in any of the tests, sporadic breaking
with a concurrent limitation of crest height cannot be completed ruled out, especially
for such a strong current.

It is now instructive to verify whether the effect of the current activates instability
also in directional sea states. Figure 19 shows the empirical wave crest distribution
at the gauges of maximum deviation from the second-order distribution and for
different current velocities. As also observed in Fig. 11 (lower panels), the selected
sea states (directional spreading coefficient N D 50) does not lead to any significant
deviation from the Forristall distribution [14] in the absence of the current, despite
the relatively large steepness. In the presence of the current, however, the empirical
wave crest distribution deviates notably from second-order wave statistics for any
current. Although the effect is less intense than in the unidirectional test, the rogue
wave crest probability is about one order of magnitude higher than second-order
theory would predict.
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Fig. 19 Wave crest distribution for directional sea states at different current speed and at probes
of maximum deviation from benchmark distributions: experimental data (open circle), Rayleigh
distribution (dashed line) and Forristall distribution [14] (solid line)

4 Conclusions

The statistical properties of unidirectional and directional wave fields, in the form of
the wave crest distribution, were discussed with the aid of laboratory experiments
that were carried out in large wave basins. The effect of nonlinearity higher than
second-order was assessed. Conditions without and with water circulation (i.e. a
background current) were considered. Specifically, the former was employed to
explore the effect of the wave directional spreading, while the latter was used to
investigate the effect of wave-current interaction.

It is nowadays well established that a steep, unidirectional wave field charac-
terized by an energy spectrum sufficiently narrow banded in the frequency domain
can develop nonlinear processes such as modulational instability. Allowing enough
space for nonlinearity to fully evolve, wave instability results in strong non-Gaussian
statistics. The wave crest distribution, in this regard, is observed to substantially
deviate from standard second-order distributions such as the Forristall distribution
[14]. Directional spreading of wave energy, nevertheless, attenuates the effect of
modulational instability. While deviations still remain notable for narrow directional
distributions, wave crests fit second-order predictions for broad directional spectra
(Fig. 12), typical of wind-generated waves.
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The presence of a background current, however, can strengthen modulational
instability, sustaining strong non-Gaussian statistics. When interacting with an
opposing current, waves are subjected to a transformation, which shrinks the
wavelength and increases the wave height. As a consequence, the steepness, an
indication of the degree of nonlinearity of the wave field, increases. Experimental
data, in this regard, substantiate that an otherwise stable unidirectional wave field
can exhibit strong deviations from second-order wave statistics, when interacting
with an opposing current (Fig. 18). Interestingly enough, wave-current interaction
also plays a substantial role in directional sea states, acting as a catalyst on
modulational wave instability. Despite intrinsic weakly non-Gaussian properties of
directional sea states, the interaction with an opposing current can in fact reinforce
nonlinearity and lead to significant deviations from second-order wave statistics,
making rogues possible even when they are the least expected.
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Appendix

The analytical form of the coupling coefficients KC
ijlm and K�

ijlm of the second order
theory are as follows:

KC
ijlm D ŒDC

ijlm � .kikj cos.�l � �m/� RiRj/�.RiRj/
�1=2 C .Ri C Rj/ (4)

K�
ijlm D ŒD�

ijlm � ..kikj cos.�l � �m/C RiRj/�.RiRj/
�1=2 C .Ri C Rj/ (5)

where
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Ri Cp
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Rj.k2i � R2i /g
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Ri Cp
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ijlmh/
C
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.
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(6)
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Rj/f
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Ri �p

Rj/2 � k�
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C
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p
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.
p
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k�
ijlm D

q
k2i C k2j � 2kikj cos.�l � �m/ (8)

kC
ijlm D

q
k2i C k2j C 2kikj cos.�l � �m/ (9)

Ri D !2i =g (10)
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Introduction to Wave Turbulence Formalisms
for Incoherent Optical Waves
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Abstract We provide an introduction to different wave turbulence formalisms
describing the propagation of partially incoherent optical waves in nonlinear
media. We consider the nonlinear Schrödinger equation as a representative model
accounting for a nonlocal or a noninstantaneous nonlinearity, as well as higher-
order dispersion effects. We discuss the wave turbulence kinetic equation describing,
e.g., wave condensation or wave thermalization through supercontinuum generation;
the Vlasov formalism describing incoherent modulational instabilities and the
formation of large scale incoherent localized structures in analogy with long-range
gravitational systems; and the weak Langmuir turbulence formalism describing
spectral incoherent solitons, as well as spectral shock or collapse singularities.
Finally, recent developments and some open questions are discussed, in particular
in relation with a wave turbulence formulation of laser systems and different
mechanisms of breakdown of thermalization.
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1 Introduction

1.1 From Incoherent Solitons to Wave Turbulence

The coherence properties of partially incoherent optical waves propagating in
nonlinear media have been studied since the advent of nonlinear optics in the
1960s, because of the natural poor degree of coherence of laser sources available
at that time. However, it is only recently that the dynamics of incoherent nonlinear
optical waves received a renewed interest. The main motive for this renewal of
interest is essentially due to the first experimental demonstration of incoherent
solitons in photorefractive crystals [1, 2]. The formation of an incoherent soliton
results from the spatial self-trapping of incoherent light that propagates in a
highly noninstantaneous response nonlinear medium [3, 4]. This effect is possible
because of the noninstantaneous photorefractive nonlinearity that averages the field
fluctuations provided that its response time, �R, is much longer than the correlation
time tc that characterizes the incoherent beam fluctuations, i.e., tc � �R. The
remarkable simplicity of experiments realized in photorefractive crystals has led
to a fruitful investigation of the dynamics of incoherent nonlinear waves. Several
theoretical approaches have been developed to describe such experiments [5–8],
which have been subsequently shown to be formally equivalent one to each other
[9, 10].

The field of incoherent optical solitons has become a blooming area of research,
as illustrated by several important achievements, e.g., the existence of incoherent
dark solitons [11, 12], the modulational instability of incoherent waves [13–15],
incoherent solitons in resonant interactions [16, 17], in liquid crystals [18], in non-
local nonlinear media [19, 20], in spin waves [21], or spectral incoherent solitons in
optical fibers [22, 23]. Nowadays, statistical nonlinear optics constitutes a growing
field of research covering various topics of modern optics, e.g., supercontinuum
generation [24], filamentation [25], random lasers [26], or extreme rogue wave
events emerging from optical turbulence [27–29].

From a broader perspective, statistical nonlinear optics is fundamentally related
to fully developed turbulence [30, 31], a subject which still constitutes one of
the most challenging problems of theoretical physics [32, 33]. In its broad sense,
the kinetic wave theory provides a nonequilibrium thermodynamic description of
developed turbulence. We schematically report in Fig. 1a qualitative and intuitive
physical insight into the analogy which underlies the kinetic wave approach and
the kinetic theory relevant for a gas system. The wave turbulence theory occupies a
rather special place on the road-map of modern science, at the interface between
applied mathematics, fluid dynamics, statistical physics and engineering. It has
potential applications and implications in a diverse range of subjects including
oceanography, plasma physics and condensed matter physics. This chapter is aimed
at introducing the wave turbulence theory as an appropriate theoretical framework
to describe the propagation of incoherent optical waves.
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Fig. 1 Analogy between a system of classical particles and the propagation of an incoherent
optical wave in a cubic nonlinear medium. (a) As described by the kinetic gas theory (Boltzmann
kinetic equation), collisions between particles are responsible for an irreversible evolution of
the gas towards thermodynamic equilibrium. (b) In complete analogy, the (Hasselmann) WT
kinetic equation and the underlying four-wave mixing describe an irreversible evolution of the
incoherent optical wave toward the thermodynamic Rayleigh-Jeans equilibrium state. (c) When
the incoherent optical wave exhibits an inhomogeneous statistics, the four-wave interaction no
longer takes place locally, i.e., the quasi-particles feel the presence of an effective self-consistent
potential, V.r/, which prevents them from relaxing to thermal equilibrium. The dynamics of
the incoherent optical wave turns out to be described by a Vlasov-like kinetic equation. (d)
In the presence of a noninstantaneous nonlinear interaction, the causality condition inherent to
the response function changes the physical picture: the nonlinear interaction involves a material
excitation (e.g., molecular vibration in the example of Raman scattering). The dynamics of the
incoherent optical wave turns out to be described by a kinetic equation analogous to the weak
Langmuir turbulence equation. Note however that a highly noninstantaneous nonlinear response
is no longer described by the weak Langmuir turbulence equation, but instead by the ‘long-range’
Vlasov-like equation (see Fig. 3)

In the following we provide a panoramic overview of the subjects covered by
this chapter. Note that these topics have been usually discussed separately in the
literature within different contexts.

1.1.1 Wave Turbulence Formulation: Thermalization and Condensation

Consider the nonlinear propagation of a partially coherent optical wave character-
ized by fluctuations that are statistically homogeneous in space (note that caution
should be exercised when separating the description of statistically homogeneous
and inhomogeneous random waves, since a homogeneous statistical wave can
become inhomogeneous as a result of the incoherent MI (see Sect. 4), or the instabil-
ity of the Zakharov-Kolmogorov spectrum [34]). In complete analogy with a system
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of classical particles, the incoherent optical field evolves, owing to nonlinearity,
towards a thermodynamic equilibrium state, as schematically illustrated in Fig. 1a,b.
A detailed theoretical description of the process of dynamical thermalization
constitutes a difficult problem. However, a considerable simplification occurs when
wave propagation is essentially dominated by linear dispersive effects, so that a
weakly nonlinear description of the field becomes possible [30, 32, 33]. The weak-
(or wave-)turbulence (WT) theory has been the subject of lot of investigations in the
context of plasma physics [35], in which it is often referred to the so-called “random
phase-approximation” approach [30, 35–39]. This approach may be considered as
a convenient way of interpreting the results of the more rigorous technique based
on a multi-scale expansion of the cumulants of the nonlinear field, as originally
formulated in [40–42]. This theory has been reviewed in [43], and studied in more
details through the analysis of the probability distribution function of the random
field in [33]. In a loose sense, the so-called ‘random phase approximation’ may
be considered as justified when phase information becomes irrelevant to the wave
interaction due to the strong tendency of the waves to decohere. The random phases
can thus be averaged out to obtain a weak turbulence description of the incoherent
wave interaction, which is formally based on irreversible kinetic equations [30].
It results that, in spite of the formal reversibility of the equation governing wave
propagation, the kinetic equation describes an irreversible evolution of the field
to thermodynamic equilibrium. This equilibrium state refers to the fundamental
Rayleigh-Jeans spectrum, whose tails are characterized by an equipartition of
energy among the Fourier modes. The mathematical statement of such irreversible
process relies on the H-theorem of entropy growth, whose origin is analogous to
the Boltzmann’s H-theorem relevant for gas kinetics. Note that the terminology
‘wave turbulence’ is often employed in the literature to denote the study of wave
systems governed by this type of irreversible kinetic equations, whose structure is
analogous to the Boltzmann kinetic formulation (see, e.g., [30, 33, 39]). However,
in many cases in this review the terminology ‘wave turbulence’ will be employed
in a broader sense, which also includes different forms of nonequilibrium kinetic
formalisms, such as the Vlasov or the weak Langmuir turbulence descriptions of
a wave system (see Fig. 1). We remark that besides this nonequilibrium kinetic
approach, the equilibrium properties of a random nonlinear wave may be studied
on the basis of equilibrium statistical mechanics by computing appropriate partition
functions [44–49].

In this chapter we will discuss different processes of optical wave thermalization
on the basis of the WT theory, as well as some mechanisms responsible for its
inhibition. In particular, the phenomenon of supercontinuum generation can be inter-
preted, under certain conditions, as a consequence of the natural thermalization of
the optical field toward the thermodynamic equilibrium state [50–52]. Furthermore,
wave thermalization can be characterized by a self-organization process, in the
sense that it is thermodynamically advantageous for the system to generate a large-
scale coherent structure in order to reach the most disordered equilibrium state.
A remarkable example of this counterintuitive phenomenon is provided by wave
condensation [53–57], whose thermodynamic equilibrium properties are analogous
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to those of quantum Bose-Einstein condensation. Classical wave condensation can
be interpreted as a redistribution of energy among different modes, in which the
(kinetic) energy is transferred to small scales fluctuations, while an inverse process
increases the power (i.e., number of ‘particles’) into the lowest allowed mode, thus
leading to the emergence of a large scale coherent structure.

We note in this respect that the phenomenon of condensation has been recently
extended to optical cavities in different circumstances [58–65], which raises
important questions, such as e.g., the relation between laser operation and the
phenomenon of Bose-Einstein condensation (see Sect. 5 below) [66]. From a
different perspective, when a wave system is driven away from equilibrium by
an external source, it no longer relaxes towards the Rayleigh-Jeans equilibrium
distribution. A typical physical example of forced system can be the excitation of
hydrodynamic surface waves by the wind. This corresponds to the generic problem
of developed turbulence. In general, it refers to a system in which the frequency-
scales of forcing and damping differ significantly. The nonlinear interaction leads
to an energy redistribution among the frequencies (modes). A fundamental problem
is to find the stationary spectrum of the system, i.e., the law of energy distribution
over the different scales. The WT theory provides an answer to this vast issue under
the assumption that the nonlinear interaction is weak—the so-called Kolmogorov-
Zakharov spectra of turbulence [30]. An experiment aimed at observing these
nonequilibrium stationary turbulent states in the context of optics has been reported
in [67] (see [68] for a complete review). Beyond optics, we refer the interested
reader to different comprehensive reviews concerning this vast area of research
[30, 32, 33, 39, 43].

1.1.2 Vlasov and Wigner-Moyal Formulations: Incoherent Solitons

When the nonlinear material is characterized by a nonlocal or a highly-
noninstantaneous response, the dynamics of the incoherent wave turns out to be
essentially governed by an effective nonlinear potential V.r/. This potential is self-
consistent in the sense that it depends itself on the averaged intensity distribution
of the random field, as schematically illustrated in Fig. 1c. Actually, the mechanism
underlying the formation of an incoherent soliton state finds its origin in the
existence of such self-consistent potential, which is responsible for a spatial self-
trapping of the incoherent optical beam. From this point of view, the very nature
of incoherent optical solitons is analogous to the random phase solitons predicted
in plasma physics a long time ago in the framework of the Vlasov equation [69–
71]. This analogy with nonlinear plasma waves has been also exploited in optics
in different circumstances [72–74], in particular in the framework of the Wigner-
Moyal formalism [8, 75], or to interpret the existence of a threshold in the incoherent
modulational instability as a consequence of the phenomenon of Landau damping
[8].

Incoherent spatial solitons can be also supported by a nonlocal spatial non-
linearity, instead of the traditional noninstantaneous nonlinearity inherent to the
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photorefractive experiments. A nonlocal wave interaction means that the response of
the nonlinearity at a particular point is not determined solely by the wave intensity at
that point, but also depends on the wave intensity in the neighborhood of this point.
Nonlocality thus constitutes a generic property of a large number of nonlinear wave
systems [76–83], and the dynamics of nonlocal nonlinear waves has been widely
investigated in this last decade [84–88]. In particular, in the highly nonlocal limit,
i.e., in the limit where the range of the nonlocal response is much larger than the
size of the beam, the propagation equation reduces to a linear and local equation
with an effective guiding potential given by the nonlocal response function. The
optical beam can thus be guided by the nonlocal response of the material, a process
originally termed ‘accessible soliton’ [78, 79, 88, 89]. In this highly nonlocal limit,
it has been shown both theoretically and experimentally that a speckled beam can
be guided and trapped by the effective waveguide induced by the nonlocal response
[19, 90].

More recently, the long-term evolution of a modulationally unstable homoge-
neous wave has been studied in the presence of a nonlocal response [20]. Contrarily
to the expected soliton turbulence process where a coherent soliton is eventually
generated in the midst of thermalized small-scale fluctuations [46, 91–93], a highly
nonlocal response is responsible for an incoherent soliton turbulence process [20].
It is characterized by the spontaneous formation of an incoherent soliton structure
starting from an initially homogeneous plane-wave. A WT approach of the problem
revealed that this type of incoherent solitons can be described in detail in the
framework of a long-range Vlasov equation, which is shown to provide an accurate
statistical description of the nonlocal random wave even in the highly nonlinear
regime of interaction. We note that this Vlasov equation differs from the traditional
Vlasov equation considered for the study of incoherent modulational instability
and incoherent solitons in plasmas [70, 71, 94], hydrodynamics [95] and optics
[8, 73, 74, 96]. The structure of this Vlasov equation is in fact analogous to that
recently used to describe systems of particles with long-range interactions [97]. For
this reason we will term this equation ‘long-range Vlasov’ equation. It is important
to underline that the long-range nature of a highly nonlocal nonlinear response
prevents the wave system from reaching thermal equilibrium [20]. This fact can
be interpreted intuitively in analogy with gravitational long-range systems and the
Vlasov-like description of the dynamics of formation and interaction of galaxies in
the Universe [97].

1.1.3 Weak Langmuir Turbulence Formulation: Spectral Incoherent
Solitons and Incoherent Shocks

When the incoherent wave propagates in a nonlinear medium whose non-
instantaneous response time cannot be neglected (e.g., Raman effect in optical
fibers), the dynamics turns out to be strongly affected by the causality property
inherent to the nonlinear response function (see Fig. 1). The kinetic wave theory
reveals in this case that the appropriate description is provided by a formalism
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analogous to that used to describe weak Langmuir turbulence in plasmas [22, 98].
A major prediction of the theory is the existence of spectral incoherent solitons
[22, 23, 99]. This incoherent soliton is of a fundamental different nature than
the incoherent solitons discussed here above. In particular, it does not exhibit a
confinement in the spatiotemporal domain, but exclusively in the frequency domain.
For this reason this incoherent structure has been termed ‘spectral incoherent
soliton’. Indeed, because the optical field exhibits a stationary statistics, the soliton
behavior only manifests in the spectral domain. Then contrarily to the expected
thermalization process, the incoherent wave self-organizes into these incoherent
soliton structures, which can thus be regarded as nonequilibrium and nonstationary
stable states of the incoherent field.

As discussed here above, the existence of a highly nonlocal response changes
the dynamics of spatially incoherent nonlinear waves in a profound way. A natural
question is to see how a highly noninstantaneous nonlinear response can change
the dynamics of temporally incoherent waves. In this temporal long-range regime,
the spectral dynamics of the field can exhibit incoherent shock waves [100]. They
manifest themselves as an unstable singular behavior of the spectrum of incoherent
waves, i.e., ‘spectral wave-breaking’. Note that shock waves play an important role
in many different branches of physics [101]. However, it should be underlined
that, at variance with conventional coherent shock waves, which require the strong
nonlinear regime, incoherent shocks develop into the highly incoherent regime
of propagation, in which linear dispersive effects dominate nonlinear effects. The
weakly nonlinear kinetic approach then reveals that these incoherent shocks are
described, as a rule, by singular integro-differential kinetic equations, which involve
the Hilbert transform as singular operator. In this way, the theory reveals unexpected
links with the 3D vorticity equation in incompressible fluids [102], or the integrable
Benjamin-Ono equation [103, 104], which was originally derived in hydrodynamics
to model internal waves in stratified fluids [105, 106].

1.1.4 Breakdown of Thermalization and the FPU Problem

The relationship between formal reversibility and actual dynamics can be rather
complex for infinite dimensional Hamiltonian systems like classical optical waves.
In integrable systems, one may expect that the dynamics is essentially periodic in
time, reflecting the underlying regular phase-space structure of nested tori. This
recurrent behavior is broken in nonintegrable systems, where the dynamics is
in general governed by an irreversible process of diffusion in phase space. The
essential properties of this irreversible evolution to equilibrium can be described
by the wave turbulence theory.

It is instructive to discuss the phenomenology of nonlinear wave thermalization
from a broader perspective. We recall in this respect the fundamental assumption of
statistical mechanics that a closed system with many degrees of freedom ergodically
samples all equal energy points in phase space. In order to analyze the limits
of this assumption, Fermi, Pasta and Ulam (FPU) considered in the 1950s a
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one-dimensional chains of particles with anharmonic forces between them [107].
They argued that, owing to the nonlinear coupling, an initial state in which the
energy is in the first few lowest modes would eventually relax to a state of
thermal equilibrium where the energy is equidistributed among all modes on the
average. However they observed that, instead of leading to the thermalization of
the system, the energy transfer process involves only a few modes and exhibits
a reversible behavior, in the sense that after a sufficiently (long) time the system
nearly goes back to its initial state. This recurrent behavior could not be interpreted
in terms of Poincaré recurrences, a feature which motivated an intense research
activity. Fundamental mathematical and physical discoveries, like the Kolmogorov-
Arnold-Moser theorem and the formulation of the soliton concept, have led to a
better understanding of the Fermi-Pasta-Ulam problem, although it is by no means
completely understood [107, 108].

We should note that, in spite of the large number of theoretical studies,
experimental demonstrations of FPU recurrences have been reported in very few
systems. In particular, the FPU recurrences associated to modulational instability
of the NLS equation have been experimentally studied in deep water waves [109],
and, more recently, in optical wave systems [110, 111]. In relation with the FPU
problem, we will comment some mechanisms which inhibit the irreversible process
of optical wave thermalization toward the Rayleigh-Jeans distribution, as described
in detail by the WT kinetic equation. In particular, the WT theory reveals the
existence of local invariants in frequency space, which lead to a novel family of
equilibrium states of a different nature than the expected thermodynamic (Rayleigh-
Jeans) equilibrium states [112, 113].

1.2 Organization of the Chapter

The chapter is structured in three different parts aimed at introducing the three
different formalisms discussed above. We will start with the Vlasov formalism
in Sect. 2, which describes in particular incoherent MI and incoherent solitons.
Next we will consider the weak Langmuir turbulence formalism in Sect. 3, which
describes spectral incoherent solitons, as well as spectral shocks and collapse
singularities. In Sect. 4 we will consider the wave turbulence kinetic equation, which
will be discussed in the framework of optical wave thermalization and condensation.
Finally some generalizations concerning the wave turbulence formulation of laser
systems and the breakdown of thermalization, as well as some open problems will
be discussed in the last Sect. 5.
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2 Vlasov Formalism

In this Section we study the transverse spatial evolution of a partially coherent wave
that propagates in a nonlocal nonlinear medium. We consider the case where the
random wave exhibits fluctuations that are statistically inhomogeneous in space. As
illustrated schematically in Fig. 2, the dynamics of the incoherent wave is described
by different forms of the Vlasov equation, whose self-consistent potential depends
on the degree of nonlocality.

2.1 Nonlocal Nonlinear Response

2.1.1 NLS Model

A nonlocal nonlinear response of the medium is found in several wave systems
such as, e.g., dipolar Bose-Einstein condensates [76], atomic vapors [77], nematic
liquid crystals [78, 79, 114], photorefractive media [82], thermal susceptibilities [80,
81, 115], and plasmas physics [83]. For this reason the impact of nonlocality on
the dynamics of nonlocal nonlinear waves has been widely investigated [88], in
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Fig. 2 Schematic illustration of the validity of the fundamental kinetic equations in the framework
of a spatially nonlocal nonlinear response—the vertical arrow denotes the amount of nonlocality
of the nonlinear interaction, while the horizontal arrow represents the amount of inhomogeneous
statistics of the incoherent wave. When the incoherent wave is characterized by fluctuations that
are statistically homogeneous in space, the relevant kinetic description is provided by the wave
turbulence kinetic equation (‘WT KE’), which describes in particular the processes of optical wave
thermalization or condensation (see Sect. 4). When the incoherent wave exhibits an inhomogeneous
statistics, the relevant kinetic description is provided by different variants of the Vlasov equation,
whose self-consistent potential depends on the amount of nonlocality in the system (see Sect. 2).
The Vlasov equation describes in particular the phenomena of incoherent modulational instability
and the formation of incoherent soliton states
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particular through the analysis of MI [84], of dark solitons [87], or the inhibition of
collapse in multi-dimensional systems [85, 86].

We consider here the standard form of the nonlocal NLS model equation
describing wave propagation in nonlinear media that exhibit a nonlocal response

i@z C ˛r2 C � 

Z
U.x � x0/ j j2.x0; z/ dx0 D 0; (1)

where x denotes the position in the transverse plane of dimension d and r2 denotes
the corresponding transverse Laplacian (r2 D @2x for d D 1, r2 D @2x C @2y
for d D 2). The nonlocal response function U.x/ is a real and even function
normalized in such a way that

R
U.x/ dx D 1, so that in the limit of a local

response [U.x/ D ı.x/, ı.x/ being the Dirac function], Eq. (1) recovers the
standard local NLS equation. The parameters ˛ D 1=.2kL/ and � refer to the
linear and nonlinear coefficients, respectively, where kL D n2�=	L, n being the
linear refractive index of the material and 	L the wavelength of the laser source.
A positive (negative) value of � corresponds to a focusing (defocusing) nonlinear
interaction. Besides the momentum, Eq. (1) conserves the power (or number of
particles) N D R j .x/j2dx, and the Hamiltonian H D E C U , where

E .z/ D ˛

Z
jr .x; z/j2 dx (2)

denotes the linear (kinetic) contribution, and

U .z/ D ��
2

“
j .x; z/j2U.x � x0/ j .x0; z/j2 dx dx0 (3)

the nonlinear contribution to the total energy H . We denote by 
 the spatial
extension of U.x/, which characterizes the amount of nonlocality in the system.
This length scale has to be compared with the healing length � D p

˛=.j� j�/,
where � D N =Ld is the density of power (intensity), L being the size of the
periodic box in the numerical simulations. We recall that � denotes the typical
wavelength excited by the modulational instability of a homogeneous background in
the limit of a local nonlinearity,
 ! 0. An other important length scale is the typical
length � that characterizes the homogeneity of the statistics. It reflects the typical
length scale over which the fluctuations of the incoherent wave can be considered
as homogeneous in space.

2.1.2 Homogeneous vs Inhomogeneous Statistics

The kinetic equation consists of an equation describing the evolution of the spectrum
of the field during its propagation in the nonlinear medium. Note that, in the
particular case in which diffraction effects can be neglected (˛ D 0), an expression
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for the evolution of the second order correlation function can be obtained in explicit
form, see [116, 117].

As schematically described through Figs. 2, 3, the structure of a kinetic equation
depends on the nature of the statistics of the random wave. The statistics is said to
be homogeneous (or stationary in the temporal domain), if the correlation function
B.x1; x2; z/ D h .x1; z/ �.x2; z/i only depends on the distance j x1 � x2 j. In the
following, the brackets h:i denote an average over the realizations of the initial noise
of the random wave  .x; z D 0/.
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Fig. 3 Schematic illustration of the validity of the fundamental kinetic equations in the framework
of a temporally noninstantaneous nonlinear response—the vertical arrow denotes the amount of
noninstantaneous response of the nonlinearity, while the horizontal arrow represents the amount
of non-stationary statistics of the incoherent wave. The diagram for the temporal domain reported
here is similar to that reported in the spatial domain in Fig. 2. The essential difference between
the spatial and the temporal domain relies on the fact that in the temporal domain the response
function is constrained by the causality condition. It turns out that when the finite response time
of the nonlinearity cannot be neglected, the relevant kinetic description is provided by an equation
analogous to the weak Langmuir turbulence equation (see Sect. 3), which describes for instance
non-localized spectral incoherent solitons. In the presence of a highly noninstantaneous nonlinear
response and a stationary statistics of the incoherent wave, the weak Langmuir turbulence reduces
to singular integro-differential kinetic equations (‘SID-KE’), e.g., Benjamin-Ono equation, which
describe spectral singularities such as dispersive shock waves and collapse behaviors. Conversely,
when the wave exhibits a non-stationary statistics still in the presence of a highly noninstantaneous
response, the dynamics is ruled by a ‘temporal long-range’ Vlasov equation, whose self-consistent
potential is constrained by the causality condition of the noninstantaneous response function, which
breaks the Hamiltonian structure of the Vlasov equation (see Sect. 2.4). The WT kinetic equation
(‘WT KE’) turns out to be relevant for an instantaneous nonlinear response and a statistically
stationary incoherent wave, as will be discussed in the framework of supercontinuum generation
in Sect. 5.2
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2.2 Short-Range Vlasov Equation

We follow the standard procedure to derive an equation for the evolution of the
autocorrelation function of the field, B.x; �; z/ D h .x C �=2; z/ �.x � �=2; z/i,
with

x D .x1 C x2/=2; � D x1 � x2: (4)

Because of the nonlinear character of the NLS equation, the evolution of the second-
order moment of the wave depends on the fourth-order moment. In the same way,
the equation for the fourth-order moment depends on the sixth-order moment, and
so on. One obtains in this way an infinite hierarchy of moment equations, in which
the nth order moment depends on the .n C 2/th order moment of the field. This
makes the equations impossible to solve unless some way can be found to truncate
the hierarchy. This refers to the fundamental problem of achieving a closure of
the infinite hierarchy of the moment equations [30, 32, 33, 43]. A simple way to
achieve a closure of the hierarchy is to assume that the field has Gaussian statistics.
This approximation is justified in the weakly nonlinear regime, Ld=Lnl � 1 (or
jU =E j � 1), where Ld D 	2c=˛ is the diffraction length, 	c being the coherence
length, and Lnl D 1=.j� j�/ is the characteristic length of nonlinear interaction.

Exploiting the property of factorizability of moments of Gaussian fields, one
obtains the following closed equation for the evolution of the autocorrelation
function

i@zB.x; �; z/ D �2˛rx:r�B.x; �; z/ � �P.x; �; z/ � �Q.x; �; z/; (5)

where

P.x; �/ D B.x; �/
Z

U.y/
�
N.x � y C �=2/� N.x � y � �=2/

�
dy (6)

Q.x; �/ D
Z

U.y/
�
B.x � y=2C �=2; y/B.x � y=2; � � y/C

� B.x � y=2; � C y/B.x � y=2� �=2;�y/
�
dy; (7)

and

N.x; z/ � B.x; � D 0; z/ D ˝j j2˛ .x; z/ (8)

denotes the averaged power of the field, which depends on the spatial variable x
because the statistics of the field is a priori inhomogeneous. Note that we have
omitted the z-label in Eqs. (6), (7).

Equations (5)–(7) is quite involved. To provide an insight into its physics we
assume that the incoherent wave exhibits a quasi-homogeneous statistics, that is to
say 	c (i.e. the length scale of the random fluctuations) is much smaller than the
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length scale of homogeneous statistics � (i.e. typically the size of the incoherent
beam), " D 	c=� � 1. We assume that the range of the response function is of the
same order as the healing length, 
 
 �. Defining the local spectrum of the wave
as the Wigner-like transform of the autocorrelation function,

nk.x; z/ D
Z

B.x; �; z/ exp.�ik:�/ d�; (9)

and performing a multiscale expansion of the solution

B.x; �; z/ D B.0/
�
"x; �; "z

	C O."/; (10)

we obtain in the first-order in " the following Vlasov-like kinetic equation [118]

@znk.x; z/C @k Q!k.x; z/:@xnk.x; z/ � @x Q!k.x; z/:@knk.x; z/ D 0: (11)

The generalized dispersion relation reads

Q!k.x; z/ D !.k/C Vk.x; z/; (12)

where !.k/ D ˛k2 is the linear dispersion relation of the NLS equation (1), and the
self-consistent potential reads

Vk.x; z/ D � �

.2�/d

Z
.1C QUk�k0/ nk0.x; z/ dk0; (13)

where QU.k/ D R
U.x/ exp.�ik:x/ dx is the Fourier transform of U.x/ [ QU.k/ being

real and even] and

N.x; z/ D 1

.2�/d

Z
nk.x; z/ dk (14)

is the averaged spatial intensity profile of the wave [see Eq. (8)].

2.2.1 Properties of the Vlasov Equation

Several important properties of the Vlasov equation (11) result from its Poisson
bracket structure. More specifically, the Vlasov equation can be recast in Hamilto-
nian form by means of the following Liouville’s equation

dznk.z; x/ � @zn C Px:@xn C Pk:@kn D 0; (15)
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where the variables k and x appear as canonical conjugate variables,

Pk D @zk D �@x Q!; (16)

Px D @zx D @k Q!; (17)

where the generalized dispersion relation (12) plays the role of an effective
Hamiltonian.

The Vlasov equation is a formally reversible equation, i.e., it is invariant
under the transformation .z; k/ ! .�z;�k/. Moreover, it conserves the
number of particles, N D .2�/�d

’
nk.x; z/ dxdk, the momentum P D

.2�/�d
’

k nk.x; z/ dxdk, and the Hamiltonian

H D 1

.2�/d

“
!.k/ nk.x/ dxdk � �

2.2�/2d

•
nk1
.x/ QUk1�k2

nk2
.x/dxdk1dk2:

(18)

In addition, the Vlasov equations (11)–(13) also conserves the so-called Casimirs,
M D ’

f Œn� dxdk, where f Œn� is an arbitrary functional of the distribution nk.x; z/.

2.3 Long-Range Vlasov Equation

2.3.1 Long-Range Response

Let us now consider a long-range nonlocal nonlinear response, 
=� � 1. Note that
in this case the random field exhibits fluctuations whose spatial inhomogeneities are
of the same order as the range of the nonlocal potential, 
 
 �. The derivation of
the long-range Vlasov equation is obtained by following a procedure similar to that
for the short-range case (
 
 �), except that we have to introduce the following
scaling for the nonlocal potential

U.x/ D "dU.0/."x/: (19)

Note that the pre-factor "d is required by the normalization condition,
R
U.x/dx DR

U.0/."x/ d."dx/ D 1. Following the multiscale expansion technique [118], one
can derive the Vlasov-like kinetic Eq. (11), with the effective dispersion relation

Q!k.x; z/ D !.k/C V.x; z/; (20)

and the long-range self-consistent potential

V.x; z/ D ��
Z

U.x � x0/N.x0; z/ dx0: (21)
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This effective potential then appears as a convolution of the nonlocal response with
the intensity profile of the incoherent wave. Contrarily to the short-range potential,
it does not depend on the spatial frequency k. The long-range Vlasov equation
conserves the number of particles, N D .2�/�d

’
nk.x; z/ dxdk, the momentum

P D .2�/�d
’

k nk.x; z/ dx dk, the Hamiltonian

H D 1

.2�/d

“
!.k/ nk.x; z/ dxdk C 1

2

Z
V.x; z/N.x; z/ dx; (22)

as well as the Casimirs, M D ’
f Œn� dxdk, where f Œn� is an arbitrary functional of

the distribution nk.x; z/.

2.3.2 Validity of the Long-Range Vlasov Equation

It is important to underline that, thanks to the long-range nonlocal response, the
system exhibits a self-averaging property of the nonlinear response,

Z
U.x � x0/j .x0; z/j2dx0 '

Z
U.x � x0/N.x0; z/dx0:

Substitution of this property into the nonlocal NLS equation (1) thus leads to a
closure of the hierarchy of the moment equations. More specifically, using statistical
arguments similar as those in [96], one can show that, owing to the highly nonlocal
response, the statistics of the incoherent wave turns out to be Gaussian. Then
contrarily to a conventional Vlasov equation, whose validity is constrained by
the assumptions of (1) weakly nonlinear interaction and (2) quasi-homogeneous
statistics, the long-range Vlasov equation provides an exact statistical description
of the random wave  .x; z/ in the highly nonlocal regime, " � 1. This property
is corroborated by the fact that the Vlasov equation considered here is formally
analogous to the Vlasov equation considered to study long-range interacting systems
[97, 119]. In this context, it has been rigorously proven that, in the limit of an infinite
number of particles, the dynamics ofmean-field Hamiltonian systems is governed by
the long-range Vlasov equation [97]. Note however that the term ‘long-range’ used
in [97] refers to a response function whose integral diverges,

R
U.x/ dx D C1,

while the response functions considered here refer to exponential or Gaussian
shaped functions typically encountered in optical materials (see e.g., [88]). We
finally note that the validity of the long-range Vlasov equation in the strongly
nonlinear regime has been recently confirmed by direct numerical simulations in
a recent work in which collective large scale incoherent shocks have been reported
[120].
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2.3.3 Incoherent Modulational Instability

Modulational (or Benjamin-Feir) Instability (MI) refers to the phenomenon in
which an initially plane- (or continuous-) wave tends to break up spontaneously
into periodic modulations while it propagates through a nonlinear medium. In the
frequency domain, this phenomenon can be interpreted as a phase-matched partially
degenerate four-wave mixing process in which an intense pump wave yields energy
to a pair of weak sideband waves. In the following we shall see that an incoherent
field that exhibits a homogeneous statistics may become modulationally unstable
with respect to the growth of weakly statistical inhomogeneities, i.e., the incoherent
field thus becomes statistically inhomogeneous [13–15, 94].

The phenomenon of incoherent MI has been the subject of a detailed investiga-
tion in the optical context with an inertial nonlinear response [8, 13, 118]. We present
here the phenomenon of incoherent MI in the framework of the long-range Vlasov
formalism. For the sake of simplicity, we limit the incoherent MI analysis to the
one-dimensional case. We assume that the incident field exhibits a homogeneous
statistics, except for small perturbations that depend on x and z. Note that any
homogeneous stationary distribution, n0k , is a solution of the Vlasov equation, that is,
@zn0k D 0. We perturb this stationary solution according to nk.x; z/ D n0k C ınk.x; z/,
with jınk.x; z/j � n0k , and linearize the Vlasov equation

@zınk.x; z/C2˛k@xınk.x; z/C �

2�
@kn

0
k

Z
dx0@xU.x�x0/

Z
dkınk.x

0; z/ D 0 (23)

This equation can be solved by a Fourier-Laplace transform,

Qınk.K; 	/ D
Z 1

0

dz
Z C1

�1
dx exp.�	z � iKx/ ınk.x; z/;

which gives the dispersion relation

� 1 D �

�
˛K2 QU.K/

Z C1

�1
n0k

.i	 � 2˛Kk/2
dk; (24)

where QU.K/ D R
U.x/ exp.�iKx/ dx. Assuming that the initial spectrum is

Lorentzian-shaped, n0k D 2N0�k=.k2 C .�k/2/ [i.e., .2�/�1
R
n0kdk D N0], Eq. (24)

gives

	.K/ D �2˛�kjKj C jKj
q
2˛�N0 QU.K/; (25)

where the incoherent MI gain reads gMI.K/ D 2<Œ	.K/�.
First of all, we can note that incoherent MI requires a focusing nonlinearity,

� > 0, as for the usual coherent MI. However, contrary to coherent MI, a focusing
nonlinearity is not a sufficient condition for the occurrence of incoherent MI. Indeed,



Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves 221

−0.1 0 0.1
0

0.005

0.01

0.015

0.02

0.025

0.03

K [Λ−1]

M
I G

ai
n 

[L
−

1 ] nl

(a)

−0.2 0 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

K [Λ−1]

M
I G

ai
n 

[L
−

1 ] nl

(b)

Fig. 4 Spatial incoherent MI: Plots of the MI gain given by Eq. (25), gMI.K/ D 2<Œ	.K/�, for
an exponential response function, U.x/ D exp.�jxj=
/=.2
/: (a) 
 D 10� (dashed), 
 D 25�

(continuous), for �k D 0:5��1. (b) �k D 0:4��1 (dashed), �k D 0:6��1 (continuous), for

 D 10�

we remark in the MI gain expression (25) the existence of a damping term, which
introduces a threshold for incoherent MI [8, 13, 74]. Note that, the existence of
a threshold for incoherent MI was shown to be formally related to an effective
Landau damping [8]. In this way, the stabilizing effect of the partial coherence does
not refer to a genuine dissipative damping, but rather a self-action effect analogous
to Landau damping of electron plasma waves that causes a redistribution of the
spectrum nk.x; z/. This effective damping significantly reduces the MI gain and the
optimal MI frequency, KMI, as illustrated in Fig. 4.

It is interesting to note that in the limit of a local response ( QU.K/ D 1),
Eq. (25) reduces to a straight line. This leads to an unphysical result: the MI gain
increases with the modulation frequency K. This pathology stems from the fact
that the derivation of the Vlasov equation with a local nonlinearity is constrained
by the assumption of quasi-homogeneous statistics. However, as discussed above
in Sect. 2.3.1, the assumption of quasi-homogeneous statistics is automatically
satisfied in the presence of a long-range nonlocality. Accordingly, the incoherent
MI gain curve (25) is bell-shaped, with a maximum growth-rate at some optimal
frequency, KMI.
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2.3.4 Incoherent Solitons

The Vlasov equation describes the evolution of the averaged spectrum of a random
wave. Hence, a spatially localized and stationary solution of the Vlasov equation
describes an incoherent soliton state. The mechanism underlying the formation of
an incoherent soliton is schematically explained in Fig. 5. We consider here the case
of bright solitons with a focusing nonlinearity (� > 0), and again we limit the
study to the pure one-dimensional situation. Let us consider the stationary Vlasov
equation

2˛k @xn
st
k .x/ � @xV.x/ @knstk .x/ D 0: (26)

where the self-consistent potential is given by V.x/ D �� R U.x� x0/N.x0/ dx0 [see
Eq. (21)]. Let us now recall an important observation originally pointed out in the
seminal paper [69], namely the fact that the solution to Eq. (26) can be expressed
as an arbitrary function of the effective Hamiltonian, h D ˛k2 C V.x/. To find an
explicit analytical solution to Eq. (26), we make use of this observation by following
the procedure outlined in [70]. In this work, Hasegawa obtained an analytical soliton
solution of the Vlasov equation in the limit of a local nonlinear interaction, U.x/ D
ı.x/. This solution has been recently generalized to a nonlocal interaction in [20].
The idea of the method is to argue that the ‘particles’ that constitute the soliton are
trapped by the self-consistent potential V.x/ provided that their energy is negative,
h � 0. This determines a specific interval of momenta for the trapped particles,
�kc � k � kc, where kc D p�V=˛ (note that V < 0 in the focusing regime,
see Fig. 5). According to Eq. (14), the intensity profile of the soliton solution thus
reads N.x/ D .2�/�1

R Ckc
�kc

nstk .x/ dk. By means of a simple change of variables, this

Fig. 5 Schematic representation of the self-trapping mechanism underlying the formation of an
incoherent soliton solution of the Vlasov equation. A soliton forms when the optical beam induces
an attractive potential V.x/ < 0 (waveguide) owing to a focusing nonlinearity (� > 0). In turn, the
optical beam is guided in its own induced potential V.x/
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integral can thus be expressed in the form of a Fredholm equation

N D 1

2�

Z 0

V

nst.h/p
h � V

dh: (27)

A solution to this equation can be obtained under the assumption that U.x/ and
N.x/ are Gaussian-shaped [20]. Assuming U.x/ D .2�
2/�1=2 expŒ�x2=.2
2/�
and N.x/ D N .2�
2N/

�1=2 expŒ�x2=.2
2N/�, and making use of the Laplace
convolution theorem, we have

nstk .x/ D Q�
�
c�N

�.x/ � ˇk2� 1�� 1
2 ; (28)

where

Q� D 2�ˇ
1
2 � .��1 C 1/

� .��1 C 1=2/� .1=2/c1=��
; (29)

� .x/ being the Gamma function, and

c� D .2�/
�
2� 1

2 �

�
N

N ��1
q

2 C 
2N

; (30)

with

� D 1

1C .
=
N/2
: (31)

This analytical solution is self-consistent, in the sense that it verifies the condition
(27), and it is straightforward to check by direct substitution that it is indeed a
solution of (27).

The fact that the above solution generalizes the solution obtained by Hasegawa
[70] becomes apparent by remarking that Eq. (28) can be expressed as

nst.h/ 
 .�h/
1
�� 1

2 : (32)

In the limit of a local potential,U.x/ D ı.x/, the parameter � ! 1, and (32) recovers
the solution nst.h/ 
 p�h [70]. Note however that for a local nonlinearity [70], the
analytical solution is valid for any form of the intensity distribution,N.x/, a property
that was subsequently interpreted in the framework of a ray-optics approach [121].
Conversely, for a nonlocal nonlinearity, the analytical solution (28)–(31) refers to a
Gaussian-shaped intensity profile.
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2.3.5 Vlasov Simulations: Incoherent Soliton Turbulence

The phenomena of incoherent MI and subsequent incoherent soliton formation can
be visualized by means of a direct numerical integration of the long-range Vlasov
equations (11), (21). This is illustrated in Fig. 6, which reports the evolution of the
spectrum of the incoherent wave during its propagation. The simulation starts from
a homogeneous spectrum, nk.x; z D 0/ ' n0k , which is periodically perturbed
to seed the incoherent MI. Because of the nonlinear Hamiltonian flow, particles
following different orbits travel at different angular speeds, a process known as
‘phase-mixing’. Each MI-modulation thus starts spiralling in the phase-space .x; k/,
which leads to the formation of four localized incoherent structures, which are
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Fig. 6 Incoherent soliton turbulence: Numerical simulation of the long-range Vlasov equa-
tions (11), (21), showing the evolution of the local spectrum, nk.x/, during the propagation. The
initial homogeneous spectrum exhibits incoherent MI: the four modulations excited by the initial
condition lead to the generation of four incoherent structures, which slowly coalesce into two, and
then into one incoherent soliton state. (a) z D 300, (b) z D 1000, (c) z D 1500, (d) z D 3000,
(e) z D 4000, (f) z D 104 (in units of Lnl), 
 D 102�. (g) Corresponding evolution of the spatial
intensity profile, N.x; z/. (h) Corresponding spectrum S.k; z0/ at z0 D 700Lnl. Source: from [20]
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mutually attracted and coalesce into two, and eventually into a single incoherent
structure. Note that this process is analogous to the soliton turbulence scenario that
occurs for coherent solitons [91]. The phase-mixing then leads to a smoothing and
homogenization of the perturbations on the incoherent structure, which thus slowly
tend to relax toward a stationary incoherent soliton state. Note that the asymptotic
evolution of inhomogeneous Vlasov states is a long standing mathematical problem
[122].

2.4 Temporal Version: Non Hamiltonian Long-Range Vlasov
Equation

We remark that, as discussed above through Fig. 3, the long-range Vlasov formalism
also plays a role in the temporal domain in the presence of a highly noninstantaneous
nonlinear response (temporal nonlocality). Because of the causality condition
inherent to the response function in the temporal domain, the Vlasov equation no
longer exhibit a Hamiltonian structure [118]. The corresponding Vlasov formalism
predicts different interesting behaviors, such as the existence of incoherent solitons
in the normal dispersion regime, in contrast to conventional solitons which are
known to require anomalous dispersion. For a review on the long-range Vlasov
formalism in the temporal domain, see [118].

3 Weak Langmuir Turbulence Formalism

In this Section we study the temporal evolution of a partially coherent wave that
propagates in a nonlinear medium characterized by a noninstantaneous response.
As discussed in Sect. 1 through Fig. 3, a delayed nonlinearity leads to a kinetic
description which is formally analogous to the weak Langmuir turbulence kinetic
equation, irrespective of the nature of the fluctuations that may be either stationary
or non-stationary. In the presence of a temporal long-range response and a stationary
statistics of the incoherent wave, the weak Langmuir turbulence formalism reduces
to a family of singular integro-differential kinetic equations (e.g., Benjamin-Ono
equation) that describe incoherent dispersive shock waves and incoherent collapse
singularities in the spectral evolution of the random wave.

3.1 Noninstantaneous Nonlinear Response

A typical example of noninstantaneous nonlinear response in one dimensional
systems is provided by the Raman effect in optical fibers [123]. We consider the



226 A. Picozzi et al.

standard 1D NLS equation accounting for a noninstantaneous nonlinear response
function

i@z C ˇ@tt C � 

Z C1

�1
R.t � t0/ j j2.t0; z/ dt0 D 0; (33)

where the response function R.t/ is constrained by the causality condition. In the
following we use the convention that t > 0 corresponds to the leading edge of the
pulse, so that the causal response will be on the trailing edge of a pulse, i.e.,R.t/ D 0

for t > 0. We will write the response function in the form R.t/ D H.�t/ NR.�t/,
where NR.t/ is a smooth function from Œ0;1/ to .�1;1/, while the Heaviside
function H.�t/ guarantees the causality property. As we will see, this convention
will allow us to easily compare the dynamics of temporal and spatial incoherent
solitons. Because of the causality property, the real and imaginary parts of the
Fourier transform of the response function

QR.!/ D QU.!/ C i g.!/; (34)

are related by the Kramers-Krönig relations. We recall that QU.!/ is even, while the
gain spectrum g.!/ is odd. The causality condition breaks the Hamiltonian structure
of the NLS equation, so that Eq. (33) only conserves the total power (‘number of
particles’) of the wave N D R j j2.t; z/ dt. The typical temporal range of the
response function R.t/ denotes the response time, �R. Note that ˇ D � 1

2
@2!k.!/

in Eq. (33), so that ˇ > 0 (ˇ < 0) denotes the regime of anomalous (normal)
dispersion.

3.2 Short-Range Interaction: Spectral Incoherent Solitons

The dynamics is ruled by the comparison of the response time, �R, with the ‘healing
time’, �0 D pjˇjLnl. We remind that the weakly nonlinear regime of interaction
refers to the regime in which linear dispersive effects dominate nonlinear effects,
i.e., Ld=Lnl � 1 where Ld D t2c=jˇj and Lnl D 1=.j� j�/ refer to the dispersive
and nonlinear characteristic lengths respectively, tc being the correlation time of
the partially coherent wave. We consider here the case of a noninstantaneous
nonlinearity characterized by a short-range response time, i.e., �R 
 �0. In this
regime, it can be shown that the kinetic equation governing the evolution of the
incoherent wave takes a form analogous to the WT Langmuir kinetic equation
[22, 118]:

@zn!.z/ D �

�
n!.z/

Z C1

�1
g.! � !0/ n!0.z/ d!0; (35)
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where we have implicitly assumed that the incoherent wave exhibits fluctuation that
are statistically stationary (homogeneous) in time—a generalized WT Langmuir
equation can be obtained for a non-stationary statistics [118]. We first note that this
equation does not account for dispersion effects (it does not involve the parameter
ˇ), although the role of dispersion in its derivation is essential in order to verify the
criterion of weakly nonlinear interaction, Ld=Lnl � 1. The fact that the dynamics
ruled by the WT Langmuir equation does not depend on the sign of the dispersion
coefficient has been verified by direct numerical simulations of the NLS Eq. (33)
[99]. The kinetic Eq. (35) conserves the power of the field N D 1

2�

R
n!.z/ d!.

Moreover, as discussed above for the Vlasov equation, the WT Langmuir equation
(35) is a formally reversible equation [it is invariant under the transformation
.z; !/ ! .�z;�!/], a feature which is consistent with the fact that it also conserves
the non-equilibrium entropy S D 1

2�

R
logŒn!.z/� d!.

The WT Langmuir equation admits solitary wave solutions [22, 74, 98, 99]. This
may be anticipated by remarking that, as a result of the convolution product in (35),
the odd spectral gain curve g.!/ amplifies the low-frequency components of the
wave at the expense of the high-frequency components, thus leading to a global red-
shift of the spectrum. We remind that these incoherent solitons are termed ‘spectral’
because they can only be identified in the spectral domain, since in the temporal
domain the field exhibits stochastic fluctuations at any time, t.

3.2.1 Numerical Simulations

Typical spectral incoherent soliton behaviors are reported in Fig. 7. The initial
condition is an incoherent wave characterized by a Gaussian spectrum with ı-
correlated random spectral phases, so that the initial wave exhibits stationary
fluctuations. The Gaussian spectrum is superposed on a background of small noise
of averaged intensity n0 D 10�5. This is important in order to sustain a steady
soliton propagation, otherwise the soliton undergoes a slow adiabatic reshaping so
as to adapt its shape to the local value of the noise background. The relative intensity
of the background noise with respect to the average power of the wave plays an
important role in the dynamics of discrete spectral incoherent solitons. Indeed,
the continuous spectral incoherent soliton is known to become narrower (i.e., of
higher amplitude) as the intensity of the background noise decreases. Accordingly,
a transition from a continuous to a discrete spectral incoherent soliton behavior
occurs as the relative intensity of the background noise is decreased: as the spectral
soliton becomes narrower than !R, the leading edge of the tail of the spectrum
will be preferentially amplified, thus leading to the formation of a discrete spectral
incoherent soliton. In order to test the validity of the WT Langmuir theory, we
reported in Fig. 7 a direct comparison with NLS simulations. We underline that an
excellent agreement has been obtained between the simulations of the NLS equation
and the WT Langmuir equation, without using any adjustable parameter [99].

Note that if the background noise level increases in a significant way and
becomes of the same order as the amplitude of the spectral soliton, the incoherent
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Fig. 7 Spectral incoherent solitons: Transition from discrete to continuous solitons. Left column
(a)–(c): Evolution of the non-averaged spectrum of the optical field, j Q j2.z; !/ (in dB-scale),
obtained by integrating numerically the NLS equation (33) for three different values of the noise
background, n0 D 10�7 (a), n0 D 10�5 (b), n0 D 10�3 (c). Right column (d)–(f): Corresponding
evolution of the averaged spectrum, n.z; !/ (in dB-scale), obtained by solving the Langmuir
WT equation (35): The comparison reveals a quantitative agreement, without using adjustable
parameters. We considered the typical Raman-like gain spectrum, g.!/ (ˇ� < 0). Source: from
[99]

wave enters a novel regime [124]. This regime is characterized by an oscillatory
dynamics of the incoherent spectrum which develops within a spectral cone during
the propagation. Such spectral dynamics exhibits a significant spectral blue shift,
which is in contrast with the expected Raman-like spectral red shift.
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3.2.2 Analytical Soliton Solution

The WT Langmuir kinetic equation (35) admits analytical soliton solutions [74,
118, 125]. More precisely, it is possible to compute the width and velocity of the
soliton given its peak amplitude nm in the regime nm � n0, where n0 denotes the
spectral amplitude of the background noise. We introduce the antiderivative of the
spectral gain G.!/ D � R1

! g.!0/d!0. The gain spectrum g.!/ is characterized by
its typical gain amplitude gi and its typical spectral width !i. Regardless of the
details of the gain curve g.!/, gi and !i can be assessed by two characteristic
quantities, namely the gain slope at the origin @!g.0/ and the total amount of
gain G.0/ D � R1

0 g.!/d!. A dimensional analysis allows to express gi and

!i in terms of these two quantities, gi D 1p
2
.�@!g.0//1=2

� � R1
0 g.!/d!

�1=2
,

!i D p
2
� � R1

0
g.!/d!

�1=2
=
� � @!g.0/

�1=2
. With these definitions, the function

G.!/ can be written in the following normalized form G.!/ D gi!ih.!=!i/; where
the dimensionless function h.x/ verifies h.0/ D 1, h0.0/ D 0, and h00.0/ D �2.
Proceeding as in [125], the profile of the soliton in the regime nm � n0 is of the

form [74], log
� n!.z/

n0

	 D log
� nm
n0

	
h
�
!�Vz
!i

�
, or equivalently:

n!.z/ � n0 D �
nm � n0

	
exp

h
� log

�nm
n0

� .! � Vz/2

!2i

i
; (36)

where the velocity of the soliton is

V D � nm � n0
log3=2

� nm
n0

	 �gi!
2
ip
�
; (37)

and its full width at half maximum is !sol D 2!i log1=2.2/= log1=2.nm=n0/.
Spectral incoherent solitons have been recently generalized in the framework

of the generalized NLS equation accounting for the self-steepening term and a
frequency dependence of the nonlinear Kerr coefficient [126]. Such nonlinear
dispersive effects are shown to strongly affect the dynamics of the incoherent wave.
A generalized WT Langmuir kinetic equation is derived and its predictions have
been found in quantitative agreement with the numerical simulations of the NLS
equation, without adjustable parameters [126].

The structure of discrete spectral incoherent solitons can also be interpreted with
an analytical soliton solution of the discretized WT Langmuir equation derived in
[127]. In this way, discrete frequency bands of the soliton are modelled as coupled
Dirac ı-functions in frequency space (ı-peak model). However, the simulations
show that, when injected as initial condition into the WT Langmuir equation with
a Raman-like gain spectrum, the analytical soliton solution rapidly relaxes during
the propagation toward a discrete spectral incoherent solution [99]. This property
reveals the incoherent nature of discrete spectral incoherent solitons.
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We finally note that the emergence of continuous and discrete spectral incoherent
solitons has been identified experimentally owing to the Raman effect in photonic
crystal fibers in the context of supercontinuum generation, a feature discussed in
detail in [23].

3.3 Long-Range Interaction: Spectral Singularities

In this section we present the procedure which allows one to derive appropriate
reduced kinetic equations from the WT Langmuir equation in the long-range
limit, i.e., the limit of a highly noninstantaneous nonlinear response, �R � �0.
As discussed here above, the causality condition leads to a gain spectrum g.!/
that decays algebraically at infinity, a property which introduces singularities into
the convolution operator of the WT Langmuir equation (35). The mathematical
procedure consists in accurately addressing these singularities, see [100]. It reveals
that, as a general rule, a singular integro-differential operator arises systematically
in the derivation of the reduced kinetic equation [100, 128]. The resulting singular
integro-differential kinetic equation then originates in the causality property of the
nonlinear response function.

These singular integro-differential kinetic equations find a direct application
in the description of dispersive shock waves, i.e., shock waves whose singularity
is regularized by dispersion effects instead of dissipative (viscous) effects [101].
Dispersive shock waves have been constructed mathematically [129] and observed
in ion acoustic waves [130] long ago, though it is only recently that they emerged
as a general signature of singular fluid-type behavior, in particular in Bose-Einstein
condensates [131, 132] and nonlinear optics [80, 81, 133, 134].

These previous studies on dispersive shock waves have been discussed for
coherent, i.e., deterministic, amplitudes of the waves. Through the analysis of the
WT Langmuir equation, we will see that incoherent waves can exhibit dispersive
shock waves of a different nature that their coherent counterpart. They manifest
themselves as a wave breaking process (“gradient catastrophe”) in the spectral
dynamics of the incoherent field [100]. Contrary to conventional shocks which are
known to require a strong nonlinear regime, these incoherent shocks develop into
the weakly nonlinear regime. This WT kinetic approach also reveals unexpected
links with the 3D vorticity equation in incompressible fluids [102], or the integrable
Benjamin-Ono equation [103], which was originally derived in hydrodynamics.

3.3.1 Damped Harmonic Oscillator Response: Spectral Dispersive Shock
Waves

The derivation of singular integro-differential kinetic equations has been developed
for a general form of the response function (see the Supplemental of [100]). Here
we illustrate the theory by considering two physically relevant examples of response
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functions, which, respectively, induce and inhibit the formation of incoherent shock
waves.

Let us first consider the example of the damped harmonic oscillator response,
NR.t/ D 1C�2

��R
sin.�t=�R/ exp.�t=�R/. Figure 8 reports a typical evolution of the

spectrum of the incoherent wave obtained by numerical simulations of the NLS
equation (33). Here we considered the highly incoherent limit, �! � �!g (tc �
�R). We see that the low frequency part of the spectrum exhibits a self-steepening
process, whose wave-breaking is ultimately regularized by the development of
large amplitude and rapid spectral oscillations typical of a dispersive shock wave.
This behavior has been described by deriving a singular integro-differential kinetic
equation from the WT Langmuir equation in the long-range regime (�R � �0):

�2R@zn! D �.1C �2/
�
n!@!n! � 1

�R
n!H @2!n!

�
; (38)

Fig. 8 Incoherent dispersive shock waves with a Raman-like response function: (a) Numerical
simulation of the NLS equation (33): The stochastic spectrum j Q j2.!; z/ develops an incoherent
shock at z ' 1200Lnl (�R D 3�0; � D 1/. Snapshots at z D 1040Lnl (b), z D 1400Lnl (c):
NLS (33) (gray) is compared with WT Langmuir equation (35) (green), singular kinetic equation
[Eq. (38)] (dashed–red), and initial condition (solid black). (d) First five maxima of n! vs z in
the long-term post-shock dynamics: the spectral peaks keep evolving, revealing the non-solitonic
nature of the incoherent dispersive shock wave. Insets: (b) gain spectrum g.!/, note that �!g is
much smaller than the initial spectral bandwidth of the wave [black line in (b)]. (c) corresponding
temporal profile j .t/j2 showing the incoherent wave with stationary statistics. Source: from [100]
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where the singular operator H refers to the Hilbert transform,

H f .!/ D 1

�
P

Z C1

�1
f .! � u/

u
du;

where we recall that P denotes the Cauchy principal value. This kinetic equation
describes the essence of incoherent dispersive shock waves: The leading-order Burg-
ers term describes the formation of the shock, which is subsequently regularized by
the nonlinear dispersive term involving the Hilbert operator. We remark in Fig. 8
that a quantitative agreement is obtained between the simulations of Eq. (38) and
those of the NLS and WT Langmuir equations, without adjustable parameters.
Also note that in the presence of a strong spectral background noise, the derived
singular equation coincides with the Benjamin-Ono equation, which is a completely
integrable equation [100].

3.3.2 Exponential Response: Spectral Collapse Singularity

As described by the general theory reported in [100], the previous scenario of
incoherent dispersive shock waves changes in a dramatic way when the response
function is not continuous at the origin, as it occurs for a purely exponential response
function, NR.t/ D exp.�t=�R/=�R. In this case, considering the limit �R=�0 � 1, the
singular kinetic equation takes the form:

�R@zn! D ��n!H n! � �

�R
n!@!n! C �

2�2R
n!H @2!n!: (39)

Interestingly, the first term of (39) was considered as a one-dimensional model of
the vorticity formulation of the 3D Euler equation of incompressible fluid flows
[102]. In this work, the authors found an explicit analytical solution to the equation
�R@zn! D ��n!H n! . For a given initial condition n!.z D 0/ D n0! the solution
has the form

n!.z/ D 4n0!�
2C .�z=�R/H n0!

	2 C .�z=�R/2.n0!/
2
: (40)

There is blow up if and only if there exists ! such that n0! D 0 and H n0! < 0.
Then the blow up distance zc is given by zc D �2�R=Œ�H n0!D!0 �, where !0 is such
that n0!0 D 0. It can be shown [100] that, if the initial condition decays faster than
a Lorentzian, the spectrum exhibits a collapse-like dynamics, which is ultimately
arrested by a small background noise. In this process, the spectrum moves at velocity
Qc, while its peak amplitude increases according to 
 4�2R=Œ�

2z2n0.! D Qcz/�. This
property is confirmed by the simulations of the NLS equation, as illustrated in Fig. 9.
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Fig. 9 Inhibition of
incoherent shocks with an
exponential response
function. Without background
spectral noise the spectrum
exhibits a collapse-like
behavior: NLS (33), gray;
singular kinetic equation (39),
dashed–red (�R D 5�0). The
dark continuous line denotes
the theoretical behavior
� 1=Œz2n0.! D Qcz/�, with
Qc D ��N=�R , predicted from
the first term of equation (39)
and the corresponding
analytical solution (40).
Source: from [100]

4 Wave Turbulence Kinetic Equation

In the previous Sects. 2, 3 we considered the Vlasov and WT Langmuir equations
which are quadratic nonlinear equations whose derivations refer to a first-order
closure of the hierarchy of moments equations. These kinetic equations are formally
reversible and describe, in particular, the spontaneous formation of incoherent
soliton structures. Let us now consider the following two limits. (1) In the spatial
domain the limit of homogeneous statistics of a broadband incoherent wave, so that
the Vlasov equation becomes irrelevant, as commented through Fig. 2 in Sect. 1. (2)
In the temporal domain the limit of stationary statistics and instantaneous response
of the nonlinearity, so that the WT Langmuir equation becomes irrelevant, as
commented through Fig. 3. In both limits, we thus need to close the hierarchy of
the moments equations to the second-order. The analysis reveals that in this case
the appropriate formalism for the description of the random wave is provided by the
(Hasselmann) WT kinetic equation, which is a cubic nonlinear equation.

4.1 Kinetic Equation in a Waveguide

4.1.1 Properties of the Kinetic Equation

The WT description of a random wave has been essentially developed in the ideal
situation in which the random wave is supposed ‘infinitely extended in space’,
an assumption that may be considered as justified when its correlation length is
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much smaller than the size of the whole beam. However, the propagation of an
incoherent localized beam is eventually affected by incoherent diffraction, which
inevitably affects the processes of thermalization and condensation. In the following
we derive the WT kinetic equation by considering the propagation of the incoherent
beam in an optical waveguide. In the guided configuration, incoherent diffraction is
compensated by a confining potential, thus allowing to study the thermalization and
the condensation of the optical field over large propagation distances. Accordingly,
we consider the NLS equation with a confining potential V.x/ and we formulate
a WT description of the random wave into the basis of the eigenmodes of the
waveguide (i.e., potential’s eigenmodes), instead of the usual plane-wave Fourier
basis relevant to statistically homogeneous random waves [V.x/ D 0] [135].

The NLS equation with a confining potential V.x/ reads

i@z D �˛r2 C V.x/ � � j j2 : (41)

Note that in this section we deal essentially with a defocusing nonlinearity,� < 0 (so
as to ensure the stability of the homogeneous plane-wave solution, i.e., condensate).
We recall that this NLS equation conserves the power of the optical field, N DR j j2 dx. The NLS equation also conserves the total energy (Hamiltonian) H D
E C U, which has a linear contribution,

E D
Z
˛jr j2 dx C

Z
V.x/j j2 dx; (42)

and a nonlinear contribution,

U D ��
2

Z
j j4 dx: (43)

The potential V.x/ models the waveguide in which the optical beam propagates.
If one considers a multimode optical fiber, the waveguide potential exhibits a
revolution symmetry with respect to the axis of propagation of the beam. Then
a direct correspondence exists between V.jxj/ and the transverse refraction index
profile of the waveguide. For a graded-index multimode fiber, we have V.jxj/ D qx2

if jxj � a and V.jxj/ D V0, if jxj � a, where q D V0=a2 [135]. This potential
is schematically illustrated in Fig. 10. In this way the finite depth of the potential
V0 < 1 introduces an effective frequency cut-off for the classical wave. This is
due to the fact that the nonlinear coupling among bounded and unbounded modes is
negligible, because of the poor spatial overlap of the corresponding modes.1

1The efficiency of the generation of unbounded modes (! � V0) is several orders of magnitude
smaller than the conversion efficiency between bounded modes (! � V0), so that their excitations
can be neglected [for details see Appendix 4 in [135]].
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Fig. 10 Refractive index profile n.x/ of an optical waveguide (graded-index fiber) (a), and corre-
sponding confining potential V.x/ in the NLS equation (41) (b). The finite depth of the potential
introduces an effective frequency cut-off for the classical wave problem. The existence of an
inhomogeneous (e.g., parabolic) potential reestablishes wave condensation in the thermodynamic
limit in 2D, in analogy with quantum Bose-Einstein condensation

4.1.2 Basic Considerations

We assume that the initial random field  .x; z D 0/ can be expanded into the
orthonormal basis of the eigenmodes of the linearized NLS equation [Eq. (41) with
� D 0],

 .x; z D 0/ D
X
m

cm.z D 0/ um.x/; (44)

where the index fmg labels the two numbers .mx;my/ needed to specify the mode
that um.x/ refers to. The modal coefficients are random variables uncorrelated with
one another,

˝
cm.z D 0/c�

n .z D 0/
˛ D nm.z D 0/ ıKn;m, ıKn;m being the Kronecker’s

symbol. We remark that this formalism is also known as the Karhunen-Loeve
expansion [118]. The eigenmodes um.x/ are orthonormal,

R
um.x/ u�

n .x/ dx D ıKn;m,
and satisfy the ‘stationary’ (i.e., z-independent) Schrödinger equation

ˇmum.x/ D �˛r2um.x/C V.x/um.x/; (45)

with the corresponding eigenvalues ˇm.
As it propagates through the waveguide the incoherent field  .x; z/ can be

represented as a superposition of modal waves with random coefficients cm.z/,
which denotes the respective modal occupancy:

 .x; z/ D
X
m

cm.z/ um.x/ exp.�iˇmz/: (46)

In the linear regime of propagation � D 0, we have cm.z/ D cm.z D 0/. In
the nonlinear regime, we will follow in the next section the procedure of the
random phase approximation underlying the WT theory [30, 39]. In particular, the
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modal occupancies cm.z/ are still random variables uncorrelated with one another,˝
cm.z/c�

n .z/
˛ D nm.z/ ıKn;m. The modal occupancies nm.z/ satisfy a coupled system of

nonlinear equations that we shall describe below.
The average local power of the field is

˝j .x; z/j2˛ D P
m nm.z/ jum.x/j2, and a

spatial integration over x gives the total average power of the beam

N D
X
m

nm.z/; (47)

which is a conserved quantity. The parameter nm.z/ thus denotes the amount of
power in the mode fmg. It can be obtained by projecting the field  .x; z/ on the
corresponding eigenmode um.x/,

nm.z/ D ˝ ˇ̌ˇ̌
Z
 .x; z/ u�

m.x/ dx

ˇ̌
ˇ̌2 ˛ D ˝jcm.z/j2˛ : (48)

Wave condensation takes place when the fundamental mode becomes macroscopi-
cally populated, i.e., when n0 � nm for m ¤ 0 [136, 137].

In the same way, by substituting the modal expansion of the incoherent field
 .x; z/ into the expression of the linear energy (42), one obtains

E.z/ D
X
m

Em.z/ D
X
m

nm.z/ ˇm: (49)

The total linear energy is the sum of the modal energies weighted by the correspond-
ing modal occupancy nm.z/.

4.1.3 Wave Turbulence Kinetic Equation in a Waveguide

We now study the influence of a weak nonlinear coupling among the modes, so that
the modal occupancies defined by (48) depend on z, nm.z/. This weakly nonlinear
regime precisely corresponds to the regime investigated numerically in Sect. 4.3.7.
Substituting the modal expansion (46) into the NLS equation (41), one obtains

i@zam D ˇmam � �
X
p;q;s

Wmpqsapa
�
q as (50)

where am.z/ D cm.z/ exp.�iˇmz/, and the fourth-order tensor is defined by the
overlap integral

Wmpqs D
Z

u�
m.x/up.x/u

�
q .x/us.x/ dx: (51)
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Equation (50) conserves the total power N D P
m jamj2 and the Hamiltonian

H D
X
m

ˇmjamj2 � �

4

X
m;p;q;s

�
Wmpqsa

�
mapa

�
q as C W�

mpqsama
�
p aqa

�
s

	
: (52)

Starting from Eq. (50) and following the procedure of the random phase approx-
imation [30, 39], we derived in [135] the irreversible kinetic equation governing
the nonlinear evolution of the modal occupancies. For this purpose, we take the
continuum limit of the discrete sum over the modes fmg, which is justified when one
deals with a large number of modes, i.e., V0=ˇ0 � 1. The substitution of the discrete
sums by continuous integrals also refers to the so-called ‘semiclassical description
of the excited states’ [137]. Its validity implies that the relevant excitation energies
contributing to the discrete sum are much larger than the level spacing ˇ0, i.e., the
spreading of the modal occupancies is much larger than ˇ0. In [135], the following
kinetic equation governing the irreversible evolution of the modal occupancies has
been derived:

@z Qn�.z/ D 4��2

ˇ60

•
d�1d�2d�3ı. Q̌

�1 C Q̌
�3 � Q̌

�2 � Q̌
�/j QW��1�2�3 j2

�Qn� Qn�1 Qn�2 Qn�3

�Qn�1
� C Qn�1

�2
� Qn�1

�1
� Qn�1

�3

	

C8��2

ˇ20

Z
d�1ı. Q̌

�1 � Q̌
�/j QU��1 . Qn/j2.Qn�1 � Qn�/; (53)

where

QU��1 . Qn/ D 1

ˇ20

Z
d�0 QW��1�0�0 Qn�0 : (54)

The functions with a tilde refer to the natural continuum extension of the corre-
sponding discrete functions, i.e., Qnk.z/ D nŒk=ˇ0�.z/, Q̌

� D ˇŒ�=ˇ0�, QW��1�2�3 D
WŒ�=ˇ0�Œ�1=ˇ0�Œ�2=ˇ0�Œ�3=ˇ0� and so on, where Œx� denotes the integer part of x.

The kinetic equations (53), (54) differs from the conventional WT kinetic
equation in several respects. First, we remark the presence of the new second term
in Eq. (53). Note that this term vanishes when the occupation of a mode depends
only on its energy Q̌. Actually, this term enforces an isotropization of the mode
occupancies amongst the modes with the same modal energy. Another important
property of the kinetic equation (53) is the presence of the function QW��1�2�3 in the
collision term. We will discuss this term through the analysis of some particular
examples of waveguide configurations.
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4.1.4 Application to Specific Examples

The kinetic equations (53), (54) is general and, in principle, relevant to different
types of waveguide configurations. We briefly comment this aspect by considering
different concrete examples.

We first comment the parabolic potential relevant to graded-index multimode
fibers. It is also known to play an important role in experiments involving weakly
interacting Bose gases [137]. In the ideal parabolic limit (V0 ! 1), um.x/ refer to
the normalized Hermite-Gaussian functions with corresponding eigenvalues ˇm D
ˇmx;my D ˇ0.mx C my C 1/,

umx;my.x; y/ D �.�mxŠmyŠ 2
mxCmy/�1=2 Hmx.�x/Hmy.�y/ expŒ��2.x2 C y2/=2�;

(55)

where � D .q=˛/1=4. In the continuum limit, we have Q̌
� D �x C �y C ˇ0. This

expression plays the role of a generalized anisotropic dispersion relation, whose
wave vector reads � D ˇ0.mx;my/. The parabolic potential will be discussed in
more detail below, in relation with wave condensation in a waveguide in Sect. 4.3.7.

An other example that can easily be illustrated is the circular waveguide of radius
R, whose index of refraction is supposed to be constant for jxj < R (‘step-index’
waveguide). We assume the waveguide to be of infinite depth for simplicity. The
field can be expanded into the orthonormal basis of the Bessel functions,  .x; z/ DP

l;s cl;s.z/ul;s.x/ exp.�iˇl;sz/, with

ul;s.x/ D 1q
�R2J2lC1.xl;s/

Jl.xl;sjxj=R/ exp.il�/; (56)

where Jl.x/ is the Bessel function of the first kind, xl;s is the sth zero of Jl.x/, and
.jxj; �/ are the polar coordinates. With these notations, the eigenvalues read ˇl;s D
˛x2l;s=R

2. In a similar way as above, the passage to the continuum limit can be done
by defining the wave vector � D ˇ0;1.l; s/, which thus leads to the kinetic equation
for the evolution of Qn�.z/. Note that with this parametrization of the wave vectors �

the density of states �.ˇ/ is uniform.
We finally show that Eq. (53) recovers the traditional WT equation when the field

is expanded into the usual plane-wave basis with periodic boundary conditions

umx;my.x/ D 1

L
expŒ2i�.mxx C myy/=L�; (57)

where L stands for the box size and k D 2�
L .mx;my/ the usual wave-vector. This

expansion is relevant to the homogeneous problem, i.e., in the absence of the
confining potential [V.x/ D 0]. It models the evolution of the random wave in
the presence of a box-shaped confining potential, V.x/, whose frequency cutoff,
kc D �=dx mimics the finite depth of the waveguide, V0 
 ˛k2c . With this plane-
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wave modal expansion, one obtains j QW��1�2�3 j2 D .2�/2

L6
ı.k1Ck3�k2�k/. Because

of the Dirac ı-function, the second term in the kinetic equation (53) vanishes, which
thus leads to the standard form of the WT kinetic equation

@z Qnk.z/ D CollŒQnk�; (58)

with the collision term

CollŒQnk� D �0�
2

•
dk1dk2dk3ı .!k1 C !k3 � !k2 � !k/ ı.k1 C k3 � k2 � k/Q. Qn/;

(59)
where �0 D 4�=.2�/2, the dispersion relation is !.k/ D ˛k2, and

Q. Qn/ D Qnk Qnk1
Qnk2

Qnk3

�Qn�1
k C Qn�1

k2
� Qn�1

k1
� Qn�1

k3

	
: (60)

As discussed in the Introduction, this kinetic equation can be derived by making
use of a rigorous mathematical technique based on a multi-scale expansion of the
cumulants of the nonlinear wave, as originally formulated in [40–42], and recently
studied in more details through the analysis of the probability distribution function
of the random field [33].

It is interesting to note that in the 1D case, the degenerate phase-matching
conditions lead to a vanishing collision term in Eq. (59). This aspect has been
discussed in [138], in relation with integrable turbulence, a subject of growing
interest [29, 139]. Notice that the presence of a nonlocal nonlinearity also leads to
a vanishing collision term in 1D—though contrary to the integrable NLS case, the
hierarchy of the moments equations can be closed to the next order in the presence
of nonlocality. Instead of the usual four-wave resonant interaction [Eq. (58)], one
obtains in this case a six-wave resonant interaction process. We refer the reader to
[68] for a detailed discussion of this interesting six-wave nonlinear dynamics.

4.2 Thermalization and Nonequilibrium
Kolmogorov-Zakharov Stationary States

We will describe the essential properties of the WT kinetic equation by considering
the standard version of the homogeneous WT kinetic equation, i.e., Eqs. (58)–(60)
[with V.x/ D 0], while the influence of the potential trap will be discussed in
Sect. 4.3.7. Note that, to avoid cumbersome notations, in the following we drop the
tilde notation adopted here above [in particular we substitute the notation Qn�.z/ with
the standard notation nk.z/]. We will also generalize the presentation of the results
to a spatial dimension d D 2 or d D 3 in the framework of the dimensionless NLS
equation

i@z D �r2 C aj j2 : (61)
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For d D 2, the spatial variable has been normalized with respect to the healing
length � D .˛Lnl/1=2 (see Sect. 2). In the same way, for d D 3 the additional
temporal variable has been normalized with respect to the healing time �0 D
.jˇjLnl/1=2 (see Sect. 3). The variables can be recovered in real units through the
transformation: z ! zLnl; t ! t�0; x ! x�; !  

p
�, where we recall that

� D N=Ld denotes the wave intensity (see Sect. 2). Note that in this section we
deal essentially with a defocusing nonlinearity, so as to ensure the stability of the
homogeneous plane-wave solution (‘condensate’). The parameter a D �sign.�/
then denotes the sign of the nonlinearity, a > 0 (a < 0) for a defocusing (focusing)
nonlinearity. We keep in mind that for d D 3 the Laplacian operator in Eq. (61)
accounts for both diffraction and dispersion effects, r2 D @xx C @yy C @tt, where we
implicitly assumed that the wave propagates in the anomalous dispersion regime,
so that chromatic dispersion acts in the same way as diffraction effects, and thus
ensures the stability of the monochromatic plane-wave solution in the defocusing
regime [140].

4.2.1 Thermodynamic Rayleigh-Jeans Spectrum

The WT kinetic equation has a structure analogous to the celebrated Boltzmann’s
equation, which is known to describe the evolution of a dilute classical gas far
from the equilibrium state [141]. For this reason the kinetic equation (58) exhibits
properties similar to those of the Boltzmann’s equation. It conserves the total power
(or quasi-particle number) of the field

N D Ld
Z

nk.z/dk; (62)

the momentum

P D Ld
Z

knk.z/dk; (63)

and the kinetic (linear) energy

E D Ld
Z
!.k/ nk.z/dk: (64)

Let us remark that Eq. (58) does not conserve the total energy H, but only its
linear contribution E. This results from the fact that the nonlinear energy has a
negligible contribution in the perturbation expansion procedure of the kinetic theory
(jU=Ej � 1).

In analogy with the Boltzmann’s equation, the kinetic wave equation is not
reversible with respect to the propagation distance z. The irreversible character of
Eq. (58) is expressed by the H-theorem of entropy growth, dS=dz � 0, where the
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nonequilibrium entropy reads

S.z/ D Ld
Z

logŒnk.z/�dk: (65)

As in standard statistical mechanics, the thermodynamic equilibrium state is
determined from the extremum of entropy, subject to the constraint of conservation
of kinetic energy (64), momentum (63) and power (62). The method of the Lagrange
multipliers thus gives the thermodynamic Rayleigh-Jeans equilibrium distribution

neqk D T

!.k/ � k:v � �
: (66)

The parameters T; � and v are in principle arbitrary and refer to the temper-
ature, chemical potential and mean velocity, by analogy with thermodynamics.
We underline that there exist a one-to-one correspondence between .T; �; v/ and
the conserved quantities .E;N;P/. This means that the evolution of the wave is
described in the framework of the microcanonical statistical ensemble, in contrast
with the conventional canonical treatment using a thermal bath [137]. Note that
the equilibrium distribution (66) yields an exactly vanishing collision term (58),
CollŒneq� D 0. This means that once the spectrum has reached the equilibrium
distribution (66), it no longer evolves during the propagation, @znk D 0.

In many cases the equilibrium distribution is spherically symmetric and the
Rayleigh-Jeans distribution takes the following simplified form

neqk D T

!.k/ � �: (67)

This equilibrium spectrum is Lorentzian-shaped and the chemical potential charac-
terizes the correlation length of the field at equilibrium, 	eqc 
 1=

p��. However,
we will see that the Langrange multiplier associated to momentum conservation
plays an essential role for the study of multiple interacting wave-packets [142],
or in the presence of higher-order dispersion effects that lead to an asymmetric
supercontinuum equilibrium spectrum, see Sect. 5.2.

4.2.2 Nonequilibrium Kolmogorov-Zakharov Stationary Spectra

As discussed in the introduction, the process of thermalization is physically relevant
when one considers a Hamiltonian wave system, which can be considered as an
‘isolated’ system. Conversely, when one considers a dissipative system which is
driven far from equilibrium by an external source, then it no longer relaxes toward
the Rayleigh-Jeans equilibrium distribution (66). A typical physical example of
forced system could be the excitation of hydrodynamic surface waves by the wind.
In general, the frequency-scales of forcing and damping differ significantly. The
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nonlinear interaction leads to an energy redistribution among the frequencies and an
important problem is to find the stationary spectra of the system.

V.E. Zakharov was the first to realize that the kinetic equation of weak-turbulence
theory also admits nonequilibrium stationary solutions [30, 143]. Contrary to the
Rayleigh-Jeans equilibrium distribution, these stationary solutions carry a non-
vanishing flux of conserved quantities, i.e., the energy and the particle fluxes.
Such nonequilibrium stationary distributions are the analogue of the Kolmogorov
spectra of hydrodynamic turbulence proposed by Kolmogorov in his theory in 1941.
Zakharov used a clever set of ‘conformal transformations’ to show that the kinetic
equation admits finite flux spectra as exact stationary solutions.

The formation of these nonequilibrium stationary solutions requires the existence
of a permanent forcing or damping in the system, a feature that has been widely
studied theoretically [30, 32, 33] (also see [144, 145]), and experimentally in
different circumstances (e.g., surface waves, spin waves, surface tension waves,
capillary waves, elastic waves). In optics, an experiment aimed at observing these
nonequilibrium stationary spectra has been reported in [67] and reviewed in [68].
In this case, the optical system is forced at the entry of the nonlinear medium
(z D 0), and the formation of the nonstationary spectrum was observed in the
transient propagation of the optical wave. Actually, in optics the propagation length
z plays the role of time, so that the observation of a permanent nonequilibrium
stationary state would require a forcing and a damping at any z. This situation is
rather artificial in optics, so that, so far, Kolmogorov-Zakharov spectra did not play
a major role in nonlinear optics experiments. For this reason, we will not discuss
such nonequilibrium stationary states and refer the reader to [30, 33, 43] for details.
For concreteness, we just give here the expressions of the nonequilibrium stationary
solutions

nQk D CQ
Q1=3

k˛Q
(68)

nPk D CP
P1=3

k˛P
(69)

where Q and P are the particle and energy fluxes in frequency space and CP;CQ

are prefactors. These solutions are exact stationary solutions of the WT kinetic
equation (58). The exponents ˛Q and ˛P depend on the scaling of the dispersion
relation and on the explicit nonlinearities. Considering the particular example of the
NLS equation (61), one obtains ˛Q D d � 2=3 and ˛P D d, where d denotes the
spatial dimension.

It is interesting to note that the process of relaxation to a stationary spectrum
can be described by means of self-similar solutions of the WT kinetic equation. In
substance, the non-stationary solution describes a self-similar front that propagates
in frequency-space and which leaves a quasi-stationary state in its wake. This self-
similar relaxation solution can be obtained for both equilibrium and nonequilibrium
Kolmogorov-Zakharov stationary solutions of the kinetic equation. We refer the
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reader to [38, 146–148] for more details concerning the properties of these self-
similar solutions. So far, these non-stationary solutions have not been exploited in
the context of optical waves.

4.3 Wave Condensation

The phenomenon of wave thermalization can be characterized by a self-organization
process, in the sense that it is thermodynamically advantageous for the system
to generate a large-scale coherent structure in order to reach the most disordered
equilibrium state. A remarkable example of this counterintuitive phenomenon is
provided by wave condensation [33, 53, 55, 57, 135, 149], whose thermodynamic
equilibrium properties are analogous to those of quantum Bose-Einstein conden-
sation [55]. Classical wave condensation can be interpreted as a redistribution
of energy among different modes, in which the (kinetic) energy is transferred to
small scales fluctuations, while an inverse process increases the power (i.e., number
of ‘particles’) into the lowest allowed mode, thus leading to the emergence of
a large scale coherent structure [55, 57, 149, 150]. It is important to note that
the phenomenon of wave condensation has been extended in this last decade
to optical cavity systems [58–61, 64, 65, 151], which raises interesting ques-
tions on the relation between laser operation and the Bose-Einstein condensation
of photons [66, 152–154]. These aspects will be discussed in more details in
Sect. 5.

4.3.1 Wave Condensation in the Cubic NLS Equation

4.3.2 3D: Condensation in the Thermodynamic Limit

To describe the thermodynamic equilibrium properties of the condensation process
in three dimensions it is important to point out some preliminary observations. We
remark that the distribution (67) realizes the maximum of the entropy SŒnk� and
vanishes exactly the collision term, CollŒneqk � D 0. However, note that Eq. (67) is
only a formal solution, because it does not lead to converging expressions for the
energy E and the power N in the limits k ! 1, a feature which is usually termed
‘ultraviolet catastrophe’. The usual way to regularize such unphysical divergence is
to introduce an ultraviolet cut-off kc. Note that a frequency cut-off appears naturally
in the numerical simulation through the spatial discretization (dx) of the NLS
equation (61), kc D �=dx. As will be discussed in detail in Sect. 4.3.7, an effective
physical frequency cut-off arises naturally in the guided wave configuration of the
optical field.
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Following the procedure of [55], one can combine Eqs. (62)–(64) and (67), which
gives the expression for the power of the field at equilibrium

N

L3
D 4� Tkc

�
1 �

p��
kc

arctan

�
kcp��

��
; (70)

E

L3
D 4� Tk3c

3

"
1C 3

�

k2c
C 3

���
k2c

� 3
2

arctan

�
kcp��

�#
: (71)

An inspection of Eq. (70) reveals that � tends to 0� for a non-vanishing temperature
T, keeping a constant power density N=L3. This means that the correlation length
	c diverge to infinity [see Eq. (67)]. By analogy with the Bose-Einstein transition in
quantum systems, such a divergence of the equilibrium distribution at k D 0 reveals
the existence of a condensation process.

As in standard Bose-Einstein condensation, the fraction of condensed power
N0=N vs the temperature T (or the energy E), may be calculated by setting � D 0

in the equilibrium distribution (67). Note that the assumption � D 0 for T � Tc can
be justified rigorously in the thermodynamic limit (i.e., L ! 1, N ! 1, keeping
N=L3 constant). One readily obtains .N � N0/=L3 D 4�Tkc and E=L3 D 4�Tk3c=3,
which gives

N0=N D 1 � E=Ec; (72)

where the critical energy reads Ec D Nk2c=3. Alternatively, the fraction of condensed
power may be expressed as a function of the temperature,

N0=N D 1 � T=Tc; (73)

where Tc D 3Ec=.4�L3k3c/. As in standard Bose-Einstein condensation,N0 vanishes
at the critical temperature Tc, and N0 becomes the total number of particles as T
tends to 0.

4.3.3 Weakly Nonlinear Regime: Weak Condensate Amplitude

The linear behavior of n0 vs E in Eq. (72) is consistent with the results of numerical
simulations. However note that Eq. (72) is derived for a spherically symmetric
continuous distribution of nk, while in the numerics the integration is discretized.
A discretization of Eq. (72) leads to a better agreement between the theory and
the numerical simulations of Eq. (61) [55]. More precisely, making use of wave
turbulence theory, one may express the averaged total energy of the field hHi in
terms of the condensed particles n0, which gives [57]

hHi
L3

D .n � n0/

P0
k 1P0
k
1
k2

C a

�
n2 � 1

2
n20

�
; (74)
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Fig. 11 Condensate fraction n0=n vs total energy density hHi =Ld . Points (diamond) refer to
numerical simulations of the normalized NLS Eq. (61) for d D 3;N� D 323 modes (a), and
d D 2;N� D 322 modes (b) [N=Ld D 1; dx D 1 (kc D �)]. Each numerical point corresponds to
a time average over 3000 time units once the equilibrium state is reached. The red line corresponds
to the condensation curve in the presence of a small condensate amplitude [WT regime, Eq. (74)],
while the blue line in the presence of a high-condensate amplitude [Bogoliubov regime, Eq. (75)].
The green line in (b) refers to the condensation curve for a non-vanishing chemical potential,
[Eq. (76), (77)]. The bars denote the amplitude of the fluctuations of n0=n at equilibrium. Source:
from [57]

where
P0

k denotes the sum over the whole frequency space which excludes the
mode k D 0 (n0 � N0=Ld, n � N=Ld). This expression is plotted in Fig. 11 (red
line), and it is in good agreement with the numerical simulations in the regime of
weak condensation (typically n0 < 0:3).

4.3.4 Bogoliubov Regime: Strong Condensate Amplitude

To describe the regime of strong condensation, one has to take into account the
“interactions between the quasi-particles”. To include the nonlinear (interaction)
contribution, the Bogoliubov’s expansion procedure of a weakly interacting Bose
gas has been adapted to the classical wave problem. The interested reader may find
the details of the analysis in [55, 57]. One obtains the following closed relation
between the total energy and the fraction of condensed power

hHi
L3

D .n � n0/

P0
k 1P0

k
k2Can0

k4C2an0k2
C a

2

�
n2 C .n � n0/

2
�
: (75)

In the presence of high-condensate amplitudes, this expression is in quantitative
agreement with the numerical simulations of the NLS equation (61), without any
adjustable parameter (see Fig. 11).
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4.3.5 2D: Condensation Beyond the Thermodynamic Limit

Let us now consider the condensation process in two dimensions. The analysis
exposed above in 3D may readily be applied to 2D, which gives N=L2 D �Tlog.1�
k2c=�/. It becomes apparent from this expression that, for a fixed power density
N=L2, � reaches zero for a vanishing temperature T. In complete analogy with the
Bose-Einstein condensation, this indicates that condensation no longer takes place
in 2D. In other terms, the critical temperature Tc tends to zero because of the infrared
divergence of the equilibrium distribution neqk . Actually, this result is rigorously
correct in the thermodynamic limit (i.e., L ! 1, N ! 1, keeping n � N=L2

constant). Nevertheless, for situations of physical interest in which N and L are
finite, wave condensation is re-established in two dimensions, a property confirmed
by the numerical simulations [57]. Indeed, one can calculate the critical temperature
for condensation in two dimensions, Tc D nL2=

P0
k 1=k

2 [150]. This expression
reveals that the discrete sum in frequency space provides a non-vanishing value of
Tc, while Tc tends to zero in the thermodynamic limit, because of the (infrared)
logarithmic divergence of the continuous integral

R
dk=k2.

In complete analogy with quantum Bose-Einstein condensation, for a finite
surface of the optical beam, wave condensation occurs for a non-vanishing value
of the chemical potential, � ¤ 0. The condensation curve may thus be derived
without the implicit assumption � D 0. The interested reader may find the details
in [57]. One obtains

hHi .�/
L2

D .n � n0/

P0
k

k2

k2��P0
k

1
k2��

C a

�
n2 � 1

2
n20

�
; (76)

n0.�/

n
D 1

��
1P

k
1

k2��
: (77)

We plotted in Fig. 11b the condensate fraction n0=n [Eq. (77)] vs the energy
density hHi=L2 [Eq. (76)], as a parametric function of �. It reveals that a non-
vanishing chemical potential makes the transition to condensation “smoother”, with
the appearance of a characteristic “tail” in the condensation curve. Such a “tail”
progressively disappears as the surface L2 increases, so that the condensation curve
n0=n vs hHi=L2 tends to the expression derived in the thermodynamic limit, i.e.,
Eq. (76) with� D 0 recovers Eq. (74). Let us remark that the theory is in quantitative
agreement with the numerical simulations of the NLS equation (61), as illustrated
in Fig. 11.

It results that the critical behaviour of the two-dimensional condensation curve
looks similar to that of a genuine “phase transition”. Note however that, strictly
speaking, “phase transitions” only occur in the thermodynamic limit, so that such
terminology is not appropriate for the two dimensional problem considered here.
Nevertheless, if one considers the macroscopic occupation of the fundamental mode
k D 0 as the essential characteristic of condensation, one may say that wave
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condensation do occur in 2D. It is important to note that for d D 2, nearby the
transition to condensation some clear evidence of a Berezinskii-Kosterlitz-Thouless
transition has been provided, with an algebraic decay of the correlation function of
the field [155].

4.3.6 Condensation Beyond the Cubic NLS Equation: Nonlocal and
Saturable Nonlinearities

The phenomenon of classical wave condensation has been essentially studied in the
framework of the NLS equation in the presence of a pure cubic Kerr nonlinearity.
In many cases, however, realistic optical experiments are not modelled by a cubic
Kerr nonlinearity. In a recent work [149], it has been shown that wave condensation
can take place with more complex nonlinearities. The examples of the nonlocal
nonlinearity and of the saturable nonlinearity were considered in [149], which
refer to natural extensions of the cubic nonlinearity [140]. It was shown that
the generalized NLS equation accounting either for a nonlocal or a saturable
nonlinearity describes a process of wave condensation completely analogous to that
described in the framework of the cubic Kerr nonlinearity. Following the procedure
of the previous Sect. 4.3.1, analytical expressions of the condensate fraction are
derived in both the weakly and the strongly nonlinear regimes of propagation, and a
quantitative agreement is obtained with the simulations [149].

4.3.7 Condensation in a Waveguide

In the previous Sect. 4.3.1 we have considered wave condensation in the ideal
limit in which the incoherent wave is expanded in the plane-wave Fourier basis
with periodic boundary conditions. As discussed above, this approach of wave
condensation requires the introduction of a frequency cut-off in the theory [55, 57],
so as to regularize the ultraviolet catastrophe inherent to classical nonlinear waves.
From the physical point of view, such a frequency cut-off is not properly justified
for classical waves. We will see that an effective frequency cut-off arises naturally
in the guided-wave configuration of the optical beam. This frequency cut-off plays
a key role in wave condensation (see Sect. 4.3.1), since it prevents the divergence
of the critical energy for condensation [135] [see Eq. (72)]. Moreover, we have
also seen that in 2D, wave condensation does not occur in the thermodynamic
limit [55, 57]. We will see that a parabolic waveguide configuration reestablishes
wave condensation in two dimensions, in analogy with quantum Bose-Einstein
condensation [137]. Accordingly, wave condensation and thermalization can be
studied accurately through the analysis of the two-dimensional spatial evolution of
a guided optical beam.
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4.3.8 Rayleigh-Jeans Distribution in a Waveguide

The starting point is the WT kinetic derived in Sect. 4.1 into the basis of the
eigenfunctions of the potential V.x/. Here we follow [135] to describe wave
condensation in an optical waveguide. The kinetic equations (53), (54) conserves
the power N D ˇ�2

0

R
d�n� and the energy E D ˇ�2

0

R
d�ˇ�n�, where we recall

that ˇ� D �x C �y C ˇ0. Contrarily to the homogeneous WT kinetic equation (58),
the kinetic equation (53), (54) does not conserve the momentum, a feature which
is consistent with the fact that the potential V.x/ prevents momentum conservation
in the NLS equation (41). The kinetic equations (53), (54) exhibits a H-theorem
of entropy growth, dS =dz � 0, where the nonequilibrium entropy reads S .z/ D
ˇ�2
0

R
d� ln.n�/. The Rayleigh-Jeans equilibrium state neq� realizing the maximum

of entropy, subject to the constraints of conservation of E and N, is obtained by
introducing the corresponding Lagrange’s multipliers,

neq� D T

ˇ� � �: (78)

Note that, in a way akin to the usual Rayleigh-Jeans distribution (67), the tempera-
ture denotes the amount of energy E� that is equipartitioned among the modes of the
waveguide. Indeed, in the tails of the equilibrium distribution (78), i.e., ˇ� � j�j,
we have E� D ˇ� n

eq
� 
 T [see Eq. (49)]. Also note that the equilibrium state (78)

cancels both collisions terms of the kinetic Eqs. (53), (54).
This equilibrium property of energy equipartition has been confirmed by the

numerical simulations of the NLS equation (41) with a truncated parabolic potential,
as illustrated in Fig. 12. To be concrete, in the numerical simulations we considered
a realistic graded-index multimode optical fiber, with a radium of 15�m and
an index difference of n1 � n0 D 10�3 (see Fig. 10), and a refractive index of
reference n0 D 1:45. With these parameters the number of modes is N� D 66.
It is important to note that silica fibers exhibit a focusing nonlinearity, � < 0 in
Eq. (41). The incoherent beam may thus exhibit filamentation effects (i.e., speckle
beam fragmentation) during its propagation in the fiber. However, as revealed by
the numerical simulations, the beam does not exhibit filamentation effects because
we consider the weakly nonlinear regime of propagation, in which the linear energy
dominates the nonlinear energy, U=E � 1. The weakly nonlinear condition can
easily be satisfied in the framework of the considered optical fiber system, since the
nonlinearity of silica fibers is known to be relatively small as compared to other
types of commonly used nonlinear optical media. In the numerical simulations,
the following standard value of the nonlinear silica coefficient was considered
n2 D �2 � 10�8 �m2/W, together with a power of the beam of 94 kW.
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Fig. 12 Condensation and thermalization in a trap: Numerical simulation of the NLS equation (41)
with a parabolic potential V.x/, showing the establishment of energy equipartition among the
modes of the waveguide: Energy per mode, Em D ˇmnm [see Eq. (49)] vs the mode m D .mx;my/,
in the initial condition (a), and averaged over the propagation once the equilibrium state is reached,
i.e., @zS ' 0 (b). The amount of power nm in the mode m D .mx;my/ is calculated by projecting
the field amplitude into the corresponding eigenmode [see Eq. (48)]. Energy almost reaches an
equipartition among all modes, except the fundamental condensed mode mx D my D 0 which
is macroscopically populated [not shown in (a), (b)]. In particular, we considered a truncated
parabolic potential (Fig. 10), so that ˇmx;my ' ˇ0.mx Cmy C 1/ and only modes whose eigenvalue
verifies ˇmx;my � V0 are guided. Source: from [135]

4.3.9 Frequency Cut-Off, Density of States and Thermodynamic Limit

The number of modes involved in the dynamics with a trap V.x/ is finite because
of the truncation of the potential (see Fig. 10, V0 < 1). In this way the truncated
potential introduces an effective frequency cut-off for the classical nonlinear wave,
because modes whose eigenvalues exceed the potential depth, ˇ� > V0, are not
guided during the propagation. A more rigorous justification of this aspect is given
in the Appendix of [135]. Note that this is in contrast with the homogeneous problem
[V.x/ D 0 in Eq. (41)], as discussed in Sect. 4.3.1. In this case, the frequency cut-
off kc is introduced by the spatial discretization (dx) of the NLS equation, i.e., kc D
�=dx, so that in the continuous limit kc ! 1 (see, e.g., [55]).

Let us discuss the importance of the truncation of the potential (V0 < 1) through
the example of a parabolic potential considered in the numerical simulations (see
Figs. 12, 13). Considering the constraint,ˇ0 � ˇ.�/ � V0, as well as the assumption
ˇ0 � V0 (i.e., large number of modesN� � 1), the power of the field at equilibrium
reads N D .T=ˇ20/

R V0
0

d�x
R V0��x
0

.�x C �y C ˇ0 � �/�1 d�y, which gives

N D T

ˇ20

�
V0 � Q� ln

� � Q�
V0 � Q�

��
; (79)



250 A. Picozzi et al.

1000 2000 3000
0

0.2

0.4

0.6

0.8

1

n
0
/N

Numerics

µ = β0

µ = β0

Fig. 13 Wave condensation in a trap: Fraction of power condensed in the fundamental mode at
equilibrium, n0=N, vs the energy of the field, H, for a truncated parabolic potential (parameters are
given in Sect. 4.3.7). The red points refer to the results of the numerical simulations of the NLS
equation (41) with a parabolic potential V.x/. They have been obtained by averaging n0=N over
the propagation distance once the equilibrium state is reached, i.e., @zS ' 0. The ‘error-bars’
denote the amount of fluctuations (standard deviation) of n0=N once equilibrium is reached. The
continuous blue line refers to the theoretical condensation curve given in Eqs. (82)–(83), while the
dashed green line refers to the corresponding thermodynamic limit [ Q� ! 0 in Eqs. (82)–(83)]. In
these plots the eigenvalues ˇm and eigenmodes um.x/ in Eqs. (82)–(83) account for the truncation
of the potential (V0 < 1). Source: from [135]

where we defined Q� D � � ˇ0. In order to comment expression (79), we recall
that in the homogeneous problem [V.x/ D 0 in Eq. (41)] wave condensation
was shown to only occur in 3D, while in 2D the chemical potential was shown
to reach zero for a vanishing temperature [55, 57, 150]. In analogy with Bose-
Einstein condensation in quantum gases, this means that wave condensation does
not occur in the thermodynamic limit in 2D. Conversely, Eq. (79) reveals that
Q� ! 0 for a non-vanishing critical temperature, Tc D 4˛Nq=V0, which indicates
that the presence of a parabolic potential V.x/ reestablishes wave condensation in
the thermodynamic limit in 2D. Indeed, the thermodynamic limit for a parabolic
potential corresponds to taking N ! 1 and q ! 0, keeping constant the product
Nq [137]. This result is in complete analogy with the well-known fact that a
parabolic potential reestablishes Bose-Einstein condensation in 2D [137]. There is
however a difference with quantum condensation. Bose-Einstein condensation is
known to be reestablished in a parabolic potential of infinite depth, V0 ! 1, while
here Tc tends to zero in the limit V0 ! 1. Contrary to the quantum case, one also
needs to introduce a finite depth of the potential, V0 < 1, to get wave condensation
in 2D. This condition is satisfied for any optical waveguide configuration.
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4.3.10 Condensate Fraction in the Waveguide

We now look for a relation between the fraction of condensed power n0=N and
the temperature T or the energy E, in a way completely analogous to what has
been done for the homogeneous problem (V.x/ D 0) in Sect. 4.3.1. As in the
usual interpretation of Bose-Einstein condensation in a trap, we set � D ˇ0 in the
equilibrium distribution (78). Note that the assumption Q� D ��ˇ0 D 0 for T � Tc
can be justified rigorously in the 2D thermodynamic limit. Isolating the fundamental
mode, one has N � n0 D .T=ˇ20/

’
D 1=.�x C �y/ d2�, where n0 D T=Œˇ20.ˇ0 � �/�.

We thus readily obtainN�n0 D TV0=ˇ20 . Proceeding in a similar way for the energy,

one obtains E � n0ˇ0 D TV20
2ˇ20

.1C 2ˇ0=V0/. Eliminating the temperature from the

expressions for E and N gives the following expression of the condensate fraction

n0
N

D 1 � E � E0
NV0=2

; (80)

where E0 D Nˇ0 refers to the minimum energy, i.e. the energy of the field when
all the power is condensed, n0=N D 1. The condensate amplitude n0=N increases as
the energy E decreases, and condensation arises below the critical energy

Ec D E0 C NV0=2 D NV0
2

�
1C 2ˇ0

V0

�
: (81)

This expression deserves to be commented in two respects. First, because of the
truncation of the waveguide potential (V0 < 1), the value of Ec does not diverge to
infinity. This is in contrast with the homogeneous problem [V.x/ D 0 in Eq. (41)],
as discussed above in 2D in Sect. 4.3.1. In this case the critical value of the energy
behaves as Ec 
 Nk2c=ln.kc/, where kc D �=dx is the arbitrary frequency cut-off. In
the continuous limit in which the spatial discretization of the NLS equation tends to
zero, dx ! 0, the critical value of the energy Ec diverges to infinity (see, e.g., [55,
57]). A second point that could be remarked in Eq. (81) is that wave condensation
is reestablished in the thermodynamic limit in 2D. Indeed, writing Eq. (81) in the
following form, Ec=S D Nq.1 C 2ˇ0=V0/=.2�/, where S D �a2 is the waveguide
surface, it becomes apparent that the energy density Ec=S does not tend to zero in
the thermodynamic limit (N ! 1; q ! 0, keeping Nq constant). As discussed in
the previous Sect. 4.3.9, this is again in contrast with the homogeneous problem and
the plane-wave expansion of the field, in which Ec=S tends to zero logarithmically
in the thermodynamic limit [57, 150].

The simple analysis of Eqs. (80), (81) outlined above provides physical insight
into the process of wave condensation. However, a direct quantitative comparison
with the numerical simulations requires the derivation of the condensation curve
relating the condensate fraction to the Hamiltonian, as discussed above in Sect. 4.3.1
for the homogeneous problem, V.x/ D 0. For this purpose, we note that Eq. (80)
can be improved along three lines. (1) The continuous integrals by a discrete sum
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over the modes of the waveguide. One obtains n0=N D 1 � .E � E0/
P0
.mx C

my/
�1= .E0.N� � 1//, where we recall that N� is the number of modes of the

waveguide, and
P0 denotes the sum over all modes fm D .mx;my/g excluding

the fundamental mode m D 0. In the continuous limit we have
P0 1

mxCmy
!

ˇ�1
0

’
D

d2�
�xC�y D V0=ˇ0 and the number of modes N� D ˇ�2

0

’
D d2� D V20=.2ˇ

2
0/,

so that the above equation recovers Eq. (80). (2) A generalization of the expression
of the condensate fraction, n0=N vs E, can be done beyond the thermodynamic
limit [57, 150], i.e., without the implicit assumption Q� D 0 for T � Tc. From
the physical point of view, this means that we take into account the finite size of
the optical waveguide. (3) We include the contribution of the nonlinear energy U
into the expression of the condensation curve. We split the contribution of the fun-
damental mode into the modal expansion of the field,  .x; z/ D  0.x; z/C ".x; z/,
where  0.x; z/ D c0.z/u0.x/ exp.�iˇ0z/ is the coherent condensate contribution
and ".x; z/ D P

m¤0 cm.z/um.x/ exp.�iˇmz/ is the incoherent contribution. This
expansion can be substituted into the expression of U in Eq. (43), and then computed
in explicit form by making use of the random phase approximation [135]. The
generalizations (1)–(3) finally lead to the following expression of the condensation
curve beyond the thermodynamic limit, including the nonlinear contribution of the
energy

n0
N
. Q�/ D 1

� Q�Pm
1

ˇm�ˇ0� Q�
(82)

hHi . Q�/ D N

P
m

ˇm
ˇm�ˇ0� Q�P

m
1

ˇm�ˇ0� Q�
C hUi . Q�/; (83)

where hUi . Q�/ is a cumbersome expression given in [135]. The fraction of con-
densed power n0=N is thus coupled to the total energy hHi through the non-
vanishing chemical potential, Q� D � � ˇ0 ¤ 0. The parametric plot of (82), (83)
with respect to Q� is reported in Fig. 13 (continuous line). As for the homogeneous
problem [V.x/ D 0], the long tail in the condensation curve at high energies H is
due to the non-vanishing chemical potential, Q� ¤ 0. In the thermodynamic limit
Q� ! 0, the condensation curve (82), (83) recovers the straight line discussed
above through Eqs. (80), (81) (see the dashed line in Fig. 13). Let us remark the
good agreement between the theoretical condensation curve and the simulations,
without using adjustable parameters. We finally note that Eqs. (82), (83) are valid
for various different types of waveguide index profiles, provided one makes use of
the appropriate eigenvalues ˇm and eigenmodes um.x/ (see [135]).
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5 Generalizations and Perspectives

5.1 Turbulence in Optical Cavities

The phenomenon of condensation discussed above in Sect. 4.3 has been recently
interpreted within a broader perspective in different active and passive optical cavity
configurations [58–65]. This raises important questions, such as e.g., the relation
between laser operation and the phenomenon of Bose-Einstein condensation. As a
matter of fact, these questions are still the subject of vivid debate—we refer the
reader to [66, 152, 154, 156] for some recent discussions on this important problem.

An important analogy with condensation has been also discussed in the dynamics
of active mode-locked laser systems in the presence of additive noise source [60,
154, 157]. On the basis of their previous works [158, 159], the authors showed that
the formation of coherent pulses in actively mode-locked lasers exhibits in certain
conditions a transition of the laser mode system to a light pulse state that is similar
to Bose-Einstein condensation, in the sense that it is characterized by a macroscopic
occupation of the fundamental mode as the laser power is increased. The analysis is
based on statistical light-mode dynamics with a mapping between the distribution of
the laser eigenmodes to the equilibrium statistical physics of noninteracting bosons
in an external potential.

5.1.1 Wave Turbulence in Raman Fiber Lasers

The dynamics of Raman fiber lasers has been also shown to exhibit some interesting
analogies with condensation-like phenomena [59, 64, 65]. Here we discuss in more
detail these systems in light of the WT theory that has been developed to describe
their turbulent dynamics. For more details, we refer the interested reader to [63] for
an overview on the WT description of Raman fiber lasers (also see the more recent
work [160]).

In [161], the Raman fiber laser is modelled as a turbulent system whose optical
power spectrum results from a weakly nonlinear interaction among the multiple
modes of the cavity. Performing a mean field approach in which the Raman Stokes
field does not evolve significantly over one cavity round trip, the authors of [161]
first establish a differential equation for the evolution of the complex amplitude En

of the nth longitudinal mode

�rt
dEn

dt
� 1

2
.g � ın/En.t/ D � i

2
�L
X
l¤0

En�l.t/

�
X
m¤0

En�m.t/E
�
n�m�l.t/ exp.2iˇml�2 c t/: (84)



254 A. Picozzi et al.

In their approach, the time evolution of En is determined by the Raman gain g, the
dispersion of the fiber, the losses ın of the fiber and of the cavity mirrors, and the
four-wave mixing process. � is the Kerr coupling coefficient and ˇ represents the
second-order dispersion coefficient of the cavity fiber. � D 1=�rt D c=2L is the
free spectral range of the Fabry-Perot cavity that has a length L. Gain, losses and
dispersive effects occurring inside the whole laser cavity are supposed to influence
the formation of the optical power spectrum through their dependence in frequency-
space. In particular fiber Bragg grating mirrors are considered as spectral filters
introducing parabolic losses in frequency space (ın D ı0 C ı2.n�/2). Dispersive
effects occurring inside the laser cavity are supposed to be dominantly governed by
the second-order dispersion ˇ of the cavity fiber. It must be emphasized that Eq. (84)
refers to the discretized version of the one-dimensional NLS equation, in which gain
and losses terms have been added [162]. In other words, the approach developed by
the authors of [161] amounts to apply a WT treatment to a one-dimensional NLS
equation, whose integrability is broken by the presence of gain and loss terms.

Assuming an exponential decay for the correlation function among the modes,
hEn.t/E�

n .t
0/i D In exp.�jt� t0j=�/, the following WT kinetic equation that governs

the temporal evolution of the intracavity spectrum was derived [161]

�rt
dI.˝/

dt
D .g � ı.˝//I.˝/C SFWM.˝/; (85)

where I.˝/ D hEnE�
n i=�. The mathematical expression of the collision term

SFWM.˝/ can be separated into two parts

SFWM.˝/ D �ıNLI.˝/C .�L/2
Z

F ŒI� d˝1 d˝2

.3�rt=�/Œ1C .4�Lˇ=3�rt/2˝2
1˝

2
2 �
; (86)

where the functional reads F ŒI� D I.˝ � ˝1/I.˝ � ˝2/I.˝ � ˝1 � ˝2/, while
the nonlinear term responsible for four-wave-mixing-induced losses ıNL reads

ıNL D .�L/2
Z

G ŒI� d˝1 d˝2

.3�rt=�/Œ1C .4�Lˇ=3�rt/2˝2
1˝

2
2 �
; (87)

where G ŒI� D ŒI.˝ �˝1/C I.˝ �˝2/�I.˝ �˝1 �˝2/� I.˝ �˝1/I.˝ �˝1/.
A stationary solution of the WT kinetic equation (85) has been obtained by
Babin et al. in [161], which exhibits the following hyperbolic-secant structure,
I.˝/ D 2I=

�
�� cosh.2˝=� /

	
, where � is the width of the intracavity laser power

spectrum. This analytical solution is in very good agreement with spectra recorded
in experiments in which the fiber laser operates well above threshold, in various
different configurations, even in regimes in which the mean field approximation
should no longer hold [163]. Although the WT approach developed in [161] has
undoubtedly provided a new insight into the physics of Raman fiber lasers, some
other numerical and experimental works have raised some interesting questions
concerning the applicability of the WT approach to the description of the spectral
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broadening phenomenon. In particular, numerical simulations of the mean field
equations introduced in [161] revealed that the shape of the laser optical power
spectrum strongly depends on the sign of the second-order dispersion coefficient
[59]. This cannot be captured by the WT theory, which is inherently insensitive to
the sign of the second-order dispersion parameter. As pointed out in [162, 164], the
formation of the Stokes spectrum is also deeply influenced both by dispersive effects
and by the spectral shape of the fiber Bragg grating mirrors used to close the laser
cavity.

5.1.2 Laminar-Turbulent Transition in Raman Fiber Lasers

Fast recording techniques have been recently exploited for the experimental char-
acterization of a laminar-turbulent transition in Raman fiber lasers [65]. The fiber
laser used in the these experiments has been specifically designed. It is made
with dispersion-free ultra-wideband super-Gaussian fiber grating mirrors. Slightly
changing the pump power, an abrupt transition with a sharp increase in the width of
laser spectrum has been observed, together with an abrupt change of the statistical
properties of the Stokes radiation. The laminar state observed before the transition
is associated to a multimode Stokes emission with a relatively narrow linewidth and
relatively weak fluctuations of the Stokes power. On the other hand, the turbulent
state corresponds to a high multimode operation with a wider spectrum and stronger
fluctuations of the Stokes power. The laminar-turbulent transition has been also
studied by means of intensive numerical simulations (see Fig. 14) [59, 64, 65]. The
simulations reveal that, by increasing the pump power, the mechanism underlying
the laminar-turbulent transition relies on the generation of an increasing number of

Fig. 14 Numerical simulations evidencing the laminar-turbulent transition in a Raman fiber laser.
The evolution of the laser optical power spectrum is plotted as a function of number of round trips
inside the laser cavity. Source: from [65]
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dark (or grey) solitons. This experimental work opens new fields of investigations, in
particular as regard the impact of phase-defects on the turbulent dynamics of purely
1D wave systems.

5.1.3 Wave Kinetics of Random Fiber Lasers

Random lasers are a rapidly growing field of research, with implications in soft-
matter physics, light localization, and photonic devices [26, 165, 166]. Considering
a different perspective, the authors of [160] described the cyclic wave dynamics
inherent to laser systems by considering weakly dissipative modifications of the
integrable NLS equation. In this way, a ‘local kinetic equation’ describing the
turbulent dynamics of a random fiber laser system is derived [160]. The key property
of this kinetic equation is that the ı-function reflecting energy conservation at
each elementary four-wave interaction is substituted by an effective Lorentzian
function that involves a frequency dependent gain. As a remarkable result, the
collision term of the local kinetic equation does not vanish in spite of the trivial
resonant conditions inherent to the 1D four-wave interaction with a purely quadratic
dispersion relation [138]. From this point of view, the local kinetic equation exhibits
properties reminiscent of those considered in [38, 167], although the equations
are different, e.g., as regard the renormalization of the dispersion relation by the
nonlinearity and the additional nonlinear damping. Then at variance with the purely
conservative (Hamiltonian) system, in active cyclic laser systems, the interactions
are mediated by a non-homogenous gain, which leads to an effective interaction
over the finite interval of the evolution coordinate. We also note that the local
kinetic equation is derived under a double separation of scales, i.e., the turbulent
regime is dominated by dispersive effects as compared to gain effects, and the
gain itself if much larger than gain variation over the typical spectral width of the
radiation. Furthermore, the authors confirm their theoretical work by means of direct
experimental measurements in random fibre lasers: In the high-power regime, the
equilibrium spectrum of the random laser measured experimentally is found in good
agreement with the nonequilibrium stationary solution of the local kinetic equation,
see Fig. 15. Finally, the theory is also completed by means of a generalization of the
linear kinetic Schawlow-Townes theory. For more details on these aspects we refer
the reader to [160].

5.1.4 Turbulent Dynamics in Passive Optical Cavities

As commented above, a classical wave can exhibit a genuine process of wave
condensation as it propagates in a 2D conservative Kerr material, [33, 55, 135].
Actually, a phenomenon completely analogous to such conservative condensation
process can occur in an incoherently pumped passive optical cavity, despite the fact
that the system is inherently dissipative [62]. For this purpose, let consider a passive
optical cavity pumped by an incoherent optical wave, whose time correlation, tc,
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Fig. 15 Nonlinear kinetic description of the random fiber laser optical spectrum. (a) Optical
spectrum measured experimentally: near the generation threshold (blue curve, laser power
= 0.025 W), slightly above the generation threshold (green curve, 0.2W) and well above the
generation threshold (red curve, 1.5 W). The optical spectrum predicted by the local wave kinetic
equation, for laser power 1.5 W is shown by dashed red line. (b) Spectrum width as a function
of the laser’s output power in theory and experiment. Experimental data are shown by black
circles. The prediction for the spectrum broadening from the nonlinear kinetic theory based on
the local wave kinetic equation (blue dashed line). The prediction for the spectral narrowing from
the modified linear kinetic Schawlow-Townes theory (dashed green line). The red line denotes
the sum of nonlinear and linear contributions. The inset shows the spectral narrowing near the
threshold in log-scale. For more details see [160]. Source: from [160]

is much smaller than the round trip time, tc � �rt. In this way, the optical field
from different cycles are mutually incoherent with one another, which makes the
optical cavity non-resonant. Because of this property, the cavity does not exhibit the
widely studied dynamics of pattern formation [168, 169]. Instead, the dynamics of
the cavity exhibits a turbulent behavior that can be characterized by an irreversible
process of thermalization toward energy equipartition. A mean-field WT equation
was derived in [62], which accounts for the incoherent pumping, the nonlinear
interaction and both the cavity losses and propagation losses. In spite of the dissipa-
tive nature of the cavity dynamics, the intracavity field undergoes a condensation
process below a critical value of the incoherence (kinetic energy) of the pump.
This phenomenon is illustrated in Fig. 16a, which shows the temporal evolution
of the condensate fraction in the intracavity field: After a transient, the fraction
of power condensed in the fundamental transverse mode of the cavity saturates to
a constant value, which is found in agreement with the theory. Figure 16b reports
the condensation curve, i.e., the fraction of condensed power at equilibrium vs the
kinetic energy of the injected pump wave. This latter quantity reflects the degree
of coherence of the pump wave and plays the role of the control parameter of the
transition to wave condensation in the cavity configuration. We remark in Fig. 16b
that the condensate fraction in this dissipative optical cavity is found in agreement
with the theory inherited from the conservative Hamiltonian NLS equation, without
using adjustable parameters. For more details on the simulations and the theory, we
refer the reader to [62].
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Fig. 16 Wave condensation in an incoherently pumped passive optical cavity. (a) Evolution of the
fraction of condensed power N0.t/=N.t/ vs time t: The condensate growth saturates to a constant
value Nst

0 =N
st , which is in agreement with the theory [62]. (b) Condensation curve: fraction of

condensed power in the stationary equilibrium state Nst
0 =N

st vs the kinetic energy of the pump EJ .
The condensation curve is computed for a fixed value of the pump intensity J0, while EJ is varied
by modifying the degree of coherence of the pump (i.e., its spectral width). The blue solid line
refers to the (Bogoliubov) strong condensation regime. The black dotted line refers to the weak
condensation regime beyond the thermodynamic limit (� ¤ 0), while the dashed black line refers
to the thermodynamic limit (� ! 0). The red points correspond to the NLS numerical simulations
with the cavity boundary conditions. For more details, see [62]. Source: from [62]

Let us note an important difference that distinguishes the thermalization and
condensation processes discussed here with those reported in the quantum photon
context in [61, 170]. In these works the thermalization process is achieved thanks to
the presence of dye molecules, which thus play the role of an external thermostat.
Conversely, in the passive cavity configuration considered here, the process of ther-
malization solely results from the four-wave interaction mediated by the intracavity
Kerr medium, while the ‘temperature’ is controlled by varying the kinetic energy
(degree of coherence) of the injected pump.

In a recent experimental work [171], the incoherently pumped passive cavity
has been implemented in a fully integrated optical fiber system, nearby the
zero-dispersion wavelength of the fiber. The dynamics of the cavity exhibits a quasi-
soliton turbulent behavior which is reminiscent of the turbulent dynamics of the
purely Hamiltonian wave system considered in [172, 173]. The analysis reveals
that, as the coherence of the injected pump wave is degraded, the cavity undergoes
a transition from the coherent quasi-soliton regime toward the highly incoherent
(weakly nonlinear) turbulent regime characterized by short-lived and extreme rogue
wave events. This transition can then be interpreted in analogy with a phenomenon
of quasi-soliton condensation. The experiments realized in the incoherently pumped
passive optical cavity have been characterized by means of complementary spectral
and temporal PDF measurements [171].

An unexpected result of [171] is that quasi-soliton condensation can take place
efficiently, even in the presence of a low cavity finesse, in contrast with wave-
condensation in 2D defocusing media discussed here above, which requires a high
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finesse [62]. This can be interpreted as a consequence of the fact that the process of
thermalization of an optical wave constitutes a prerequisite for the phenomenon
of wave-condensation in a defocusing medium, while wave thermalization is
known to require a high cavity finesse. There is another important difference
which distinguishes wave-condensation and (quasi-)soliton condensation. Wave-
condensation is known to exhibit a property of long-range order and coherence,
in the sense that the correlation function of the field amplitude does not decay at
infinity, limjr�r0j!1 hA.r/A�.r0/i ¤ 0, a property consistent with the idea that
the coherence length of a plane-wave diverges to infinity [55]. This is in contrast
with the spatial localized character of a (quasi-)soliton, which naturally limits the
range of coherence to the characteristic spatial width of the (quasi-)soliton structure.
Wave-condensation then appears to be more sensitive to the “boundary conditions”
of the system, and thus results less robust than (quasi-)soliton condensation when
considered in an optical cavity system.

5.2 Optical Wave Thermalization Through Supercontinuum
Generation

The phenomenon of SC generation is characterized by a dramatic spectral broaden-
ing of the optical field during its propagation [24, 174]. As a rather general rule, the
process of spectral broadening is interpreted through the analysis of the following
main nonlinear effects: the four-wave mixing effect, the soliton fission, the Raman
self-frequency shift and the generation of dispersive waves [174]. Due to such a
multitude of nonlinear effects involved in the process, a complete and satisfactory
theoretical description of SC generation is still lacking. However, there is a growing
interest in developing new theoretical tools aimed at describing SC generation in
more details, see e.g., [175].

The general physical picture of SC generation in PCFs can be summarized as
follows. When the PCF is pumped with long pulses in the anomalous dispersion
regime, MI is known to lead to the generation of a train of soliton-like pulses, which
in turn lead to the emission of Cherenkov radiation in the form of spectrally shifted
dispersive waves. These optical solitons are known to exhibit a self-frequency shift
towards longer wavelengths as a result of the Raman effect. One encounters the same
picture if the PCF is characterized by two zero dispersion wavelengths. In this case
the Raman frequency shift of the solitons is eventually arrested in the vicinity of the
second zero dispersion wavelengths. The SC spectrum then results to be essentially
bounded by the corresponding dispersive waves [24, 176]. The important aspect to
underline here is that in all these regimes the existence of coherent soliton structures
plays a fundamental role into the process of SC generation.

This physical picture of SC generation changes in a significant way when one
considers the regime in which long and intense pump pulses are injected into the
PCF. Indeed, in this highly nonlinear regime, the spectral broadening process is
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essentially dominated by the combined effects of the Kerr nonlinearity and higher-
order dispersion, i.e., by four-wave mixing processes [177]. In this regime the
optical field exhibits rapid and random temporal fluctuations, which prevent the
formation of robust and persistent coherent soliton structures. It turns out that the
optical field exhibits an incoherent turbulent dynamics, in which coherent soliton
structures do not play any significant role. In the following we shall term this regime
the ‘incoherent regime of SC generation’ [178].

In these last years a nonequilibrium thermodynamic interpretation of this
incoherent regime of SC generation has been formulated [23, 50, 51, 99, 178] on
the basis of the WT theory. In the following we remind the main aspect of optical
wave thermalization through SC generation. For more details we refer the interested
reader to the short review article [179]. The generalized NLS equation is known to
describe the main properties of SC generation in a PCF [123, 174]. In its simplest
form that neglects the Raman effect, the shock term, the generalized NLS equation
takes the form:

i
@ 

@z
C

mX
j	2

ijˇj
jŠ

@j 

@tj
C � j j2 D 0; (88)

with the corresponding dispersion relation:

k.!/ D
mX
j	2

ˇj!
j

jŠ
: (89)

In the following we consider dispersion curves of PCFs characterized by two zero
dispersion wavelengths, whose accurate description requires a high-order Taylor
expansion of the dispersion relation (m > 4 and even). Starting from the high-
order dispersion NLS equation (88), one can derive the irreversible WT kinetic
equation governing the evolution of the averaged spectrum of the field n.z; !/
[
˝ Q .z; !1/ Q �.z; !2/

˛ D n.z; !1/ ı.!1 � !2/]:

@zn.z; !1/ D CollŒn�; (90)

with the collision term

CollŒn� D
•

d!2 d!3 d!4 n.!1/n.!2/n.!3/n.!4/

� W Œn�1.!1/C n�1.!2/� n�1.!3/� n�1.!4/� (91)

where ‘n.!/’ stands for ‘n.z; !/’ in Eq. (91). As usual in the WT kinetic equation,
the phase-matching conditions of energy and momentum conservation are expressed

by the presence of Dirac ı-functions in W D �2

�
ı.!1 C !2 � !3 � !4/ ıŒk.!1/ C

k.!2/ � k.!3/ � k.!4/�, where k.!/ refers to the linear dispersion relation.
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Equation (90) conserves the power density N=T0 D R
n.z; !/ d!, the density of

kinetic energy E=T0 D R
k.!/ n.z; !/ d! and the density of momentum P=T0 DR

! n.z; !/ d!, where T0 refers to the considered numerical time window. It also
exhibits a H-theorem of entropy growth, @zS � 0, where the nonequilibrium
entropy reads S .z/ D R

logŒn.z; !/� d!. The Rayleigh-Jeans equilibrium distri-
bution is obtained by maximising the entropy under the constraints imposed by the
conservation of the energy, momentum and power, which gives

neq.!/ D T

k.!/C 	! � �
; (92)

where T and � are by analogy with thermodynamics the temperature and the
chemical potential of the incoherent wave at equilibrium.

The meaning of the parameter 	 becomes apparent through the analysis of the
group-velocityvg of the optical field [k0.!/ � @k=@! D 1=vg.!/]. Indeed, recalling
the definition of an average, hA ieq D R

A neq.!/ d!=
R
neq.!/ d! and making use

of the equilibrium spectrum (92), one readily obtains

˝
k0.!/

˛
eq

D �	: (93)

The parameter 	 then denotes the average of the inverse of the group-velocity of the
optical field at equilibrium. We report in Fig. 17c the comparison of the theoretical
prediction (92) with the results of the numerical simulations of the high-order NLS
equation (88). A quantitative agreement is obtained between the simulations and the
theory (92), without using adjustable parameters [51]. The Rayleigh-Jeans spectrum
is characterized by a double-peaked structure, which results from the presence of
two zero dispersion wavelengths in the dispersion curve of the PCF. The relaxation
toward thermal equilibrium is also corroborated by the saturation of the process of
entropy production illustrated in Fig. 17b. Note however that a notable discrepancy
is visible in the tails of the spectrum in Fig. 17c, as if the thermalization process
were not achieved in a complete fashion. Actually, the simulations reveal that the
tails of the spectrum exhibits a very slow process of spectral broadening, which
apparently tends to evolve toward the expected Rayleigh-Jeans tails—though the
required propagation length is extremely large. This aspect will be discussed in
more detail in Sect. 5.3. Note that the good agreement between the theory and
the simulations has been obtained in a variety of configurations, e.g., under cw or
incoherent pumping, as discussed in detail in [50, 51].

5.2.1 Thermodynamic Phase-Matching

The thermodynamic equilibrium spectrum given in Eq. (92) is characterized by a
double peak structure, which originates from the two zero dispersion wavelengths
that characterize the PCF dispersion curve. It is important to underline, however, that
the frequencies .!1; !2/ of the two peaks of neq.!/ do not simply correspond to the
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Fig. 17 Optical wave thermalization through SC generation. (a) Simulation of the instantaneous
NLS equation (88) with a dispersion curve featured by two zero-dispersion wavelengths (for
more details see [179]). (b) Optical wave thermalization is characterized by a process of entropy
production, which saturates to a constant level once the equilibrium state is reached, as described
by the H-theorem of entropy growth. (c) Comparison of the thermodynamic Rayleigh-Jeans
equilibrium spectrum neq.!/ [Eq. (92)] (red line), and the numerical spectrum corresponding to
an averaging over the last 20 m of propagation. A good agreement is obtained without adjustable
parameters—note however a discrepancy in the tails of the spectrum (see the text for discussion)

minima of the dispersion relation, i.e. k0.!1;2/ ¤ 0. To further analyze this aspect, let
us write the thermodynamic equilibrium spectrum in the form neq.!/ D T=F .!/,
with F .!/ D k.!/ C 	! � �. The two frequencies .!1; !2/ which maximize the
equilibrium spectrum (92) satisfy F 0.!1/ D F 0.!2/ D 0, i.e., k0.!1/ D k0.!2/ D
�	. This observation reveals that the two frequencies .!1; !2/ of the double peaked
equilibrium spectrum (92) are selected in such a way that the corresponding group-
velocities coincide with the average group-velocity of the optical wave,

vg.!1/ D vg.!2/ D 1=
˝
k0.!/

˛
eq D �1=	: (94)

It can be shown that there exists, in principle, a unique pair of frequencies
.!1; !2/ satisfying the conditions given by Eqs. (94). In other terms, for a given
thermodynamic equilibrium spectrum (92), there exists a unique pair of frequencies
.!1; !2/ that leads to a matched group-velocity of the double peaked spectrum
[51]. In this sense, Eq. (94) can be regarded as a thermodynamic phase-matching
condition.
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The thermodynamic phase-matching given by Eq. (94) then imposes a matching
of the group-velocities of the two spectral peaks of the SC spectrum. The fact that
different wave-packets naturally tend to propagate with the same group-velocity
was discussed in [142]. This can be interpreted in analogy with basic equilibrium
thermodynamic properties, namely that an isolated system can only exhibit a
uniform motion of translation (and rotation) as a whole, while any macroscopic
internal motion is not possible at thermodynamic equilibrium [180]. In this way,
it was shown that a velocity locking is required, in the sense that it prevents “a
macroscopic internal motion in the wave system.” We refer the interested reader to
[51, 118] for more details on this aspect.

5.3 Breakdown of Thermalization

As discussed in the introduction section in relation with the Fermi-Pasta-Ulam prob-
lem, thermalization does not necessarily in nonlinear systems. By considering the
one-dimensional NLS equation, we present in this section two different mechanisms
that inhibit the process of optical wave thermalization toward the Rayleigh-Jeans
distribution. Depending on whether the dispersion relation is truncated up to
the third, or fourth-order, the wave system exhibits different types of relaxation
processes. Provided that the interaction occurs in the weakly nonlinear regime, the
WT theory provides an accurate description of such mechanisms of breakdown of
thermalization.

5.3.1 Truncated Thermalization

We consider here the 1D NLS equation in which the dispersion relation is
truncated to the fourth-order. In this case, the WT theory reveals the existence of
an irreversible evolution toward a Rayleigh-Jeans equilibrium state characterized
by a compactly supported spectral shape [52]. This phenomenon of truncated
thermalization may explain the physical origin of the abrupt SC spectral edges
discussed above in Sect. 5.2. Besides its relevance in the context of SC generation,
this phenomenon is also important from a fundamental point of view. Indeed, it
unveils the existence of a genuine frequency cut-off that arises in a system of
classical waves described by the generalized NLS equation, a feature of importance
considering the well-known ultraviolet catastrophe of ensemble of classical waves
[118].

The starting point is the NLS equation (88) accounting for third- and fourth-
orders dispersion effects, as well as the corresponding WT kinetic equation (90).
The kinetic theory reported in [52] reveals that the process of thermalization to the
Rayleigh-Jeans spectrum (92) is not achieved in a complete way, but turns out to be
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truncated within a specific frequency interval defined by the bounds, ! 2 Œ!�; !C�,
with

!˙ D � Q̨
4 Q̌�0

˙
p
21

12 Q̌�0

q
3 Q̨ 2 C 8 Q̌; (95)

where Q̨ and Q̌ refer to the normalized third- and fourth-orders dispersion param-
eters, namely Q̨ D Lnlˇ3=

�
6�30

	
, and Q̌ D Lnlˇ4=

�
24�40

	
, where �0 D p

ˇ2Lnl=2
is the corresponding healing time, i.e., the characteristic time for which linear and
nonlinear effects are of the same order of magnitude [118].

The confirmation of this process of truncated thermalization by the numerical
simulations has not been a trivial task. This is due to the fact that in the usual
configurations of SC generation discussed above, the cascade of MI side-bands
generated by the cw pump in the early stage of propagation spreads beyond the
frequency interval predicted by the theory. As already discussed, the MI process
is inherently a coherent nonlinear phase-matching effect which is not described
by the WT kinetic equation [Eqs. (90), (91)]. This explains why the numerical
simulations reported above (or in [50, 51]) did not evidence a precise signature of
this phenomenon of truncated thermalization.

In order to analyze the theoretical predictions in more detail, one needs to
decrease the injected pump power so as to maintain the (cascaded) MI side-bands
within the frequency interval (95). Intensive numerical simulations of the NLS
equation in this regime of reduced pump power have been performed in [52]. This
study reveals that the nonlinear dynamics slows down in a dramatic way, so that
the expected process of thermalization requires huge nonlinear propagation lengths.
This results from the fact that the normalized parameters Q̨ and Q̌ decrease as the
pump power decreases, so that the NLSE approaches the integrable limit, which
does not exhibit thermalization [138]. We report in Fig. 18 the wave spectra at
different propagation lengths obtained by solving the NLS equation with Q̨ D
0:1 and Q̌ D 0:02. In the early stage of propagation, z 
 200, the spectrum
remains confined within the frequency interval Œ!�; !C� predicted by the theory
[Eq. (95)], although the spectrum exhibits a completely different spectral profile
than the expected Rayleigh-Jeans distribution. As a matter of fact, the process of
thermalization requires enormous propagation lengths, as illustrated in Fig. 18d,
which shows that the wave spectrum eventually relaxes toward a truncated Rayleigh-
Jeans distribution. For more details on these numerical simulations, we refer the
reader to [118].

5.3.2 Anomalous Thermalization

Here we discuss another mechanism that inhibits the natural process of thermaliza-
tion. We consider the 1D NLS equation by truncating the dispersion relation up
to the third order. We will see that the incoherent wave exhibits an irreversible
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Fig. 18 Truncated thermalization of incoherent waves: Spectra j Q j2.!; z/ obtained by solving the
NLS equation (88) with solely third and fourth-order dispersion effects ( Q̨ D 0:1, Q̌ D 0:02): (a)
z D 200, (b) z D 104 , (c) z D 5�105 , (d) z D 106 . After a long transient, the wave relaxes toward
a truncated Rayleigh-Jeans distribution [Eq. (92), green line] (d). The dashed red lines denote the
frequencies !˙ in Eq. (95)—! is here in units of ��1

0 . Source: from [52]

evolution toward an equilibrium state of a different nature than the conventional
Rayleigh-Jeans equilibrium state. The WT kinetic equation reveals that this effect
of anomalous thermalization is due to the existence of a local invariant in frequency
space J! , which originates in degenerate resonances of the system [112, 113]. In
contrast to conventional integral invariants that lead to a generalized Rayleigh-Jeans
distribution, here, it is the local nature of the invariant J! that makes the new
equilibrium states different than the usual Rayleigh-Jeans equilibrium states. We
remark that local invariants and the associated process of anomalous thermalization
have been also identified in the 1D vector NLS equation, a configuration in which
optical fiber experiments have been also performed, see [112].
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The starting point is the NLS equation (88) accounting for third-order dispersion
effects, as well as the corresponding WT kinetic equation (90). A refined analysis
of the WT kinetic equation reveals a remarkable property, namely the existence of a
local invariant in frequency space:

J.!/ D n.!; z/ � n.q � !; z/; (96)

where q D 2s!�, !� being the zero-dispersion angular frequency, and s D sign.ˇ2/
[112, 113]. This invariant is ‘local’ in the sense that it is verified for each frequency
! individually, @zJ.!/ D 0. It means that the subtraction of the spectrum by the
reverse of itself translated by q, remains invariant during the whole evolution of
the wave. The invariant (96) finds its origin in the following degenerate resonance
of the phase-matching conditions: a pair of frequencies .!; q � !/ may resonate
with any pair of frequencies .!0; q � !0/, because k.!/ C k.q � !/ D sq2=3 does
not depend on !. Because of the existence of this local invariant, the incoherent
wave relaxes toward an equilibrium state of fundamental different nature than the
expected thermodynamic Rayleigh-Jeans spectrum:

nloc.!/ D J!
2

C 1

	

0
@1C

s
1C

�
	J!
2

�21A : (97)

Here, the parameter 	 is determined from the initial condition through the con-
servation of the power. We remark that the equilibrium distribution (97) vanishes
exactly the collision term of the kinetic equation, i.e., it is a stationary solution.
The equilibrium distribution is characterized by a remarkable property: it exhibits
a constant spectral pedestal, nloc.!/ ! 2=	 for j!j � j!�j. We remark in this
respect that in the tails of the spectrum (j!j � j!�j), the invariant J! vanishes,
so that a constant spectrum (n! D const) turns out to be a stationary solution of
the WT kinetic equation. The existence of the process of anomalous thermalization
has been confirmed by the numerical simulations of both the NLS equation and
the WT kinetic equation, as illustrated in Fig. 19. For more details on theoretical
and numerical simulations of anomalous thermalization, we refer the reader to
[113, 118, 181].

5.3.3 Local vs Integral Invariants

The equilibrium distribution (97) is of a fundamental different nature than the
conventional Rayleigh-Jeans distribution. In particular, as discussed just above,
nloc.!/ is characterized by a constant spectral pedestal in the tails of the spectrum.
The kinetic theory reveals that the difference between nloc.!/ and neq.!/ is due to
the existence of the local invariant J! . Let us briefly discuss the ‘local’ nature of the
invariant J! in regard to the integral invariants investigated in [182–185] in line with
the problem of integrability. First of all, one may note that the possible existence of
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Fig. 19 Anomalous thermalization of incoherent waves: (a) Spectral evolution obtained by
integrating numerically the NLSE with third-order dispersion (blue) and the corresponding WT
kinetic equation (red) at z D 20; 000 for Q̨ D 0:05 (a). (b) Numerical simulations of the WT
kinetic equation showing the spectral profile n.z; !/ at different propagation lengths z: a constant
spectral pedestal emerges in the tails of the spectrum ( Q̨ D 0:05). The spectrum slowly relaxes
toward the equilibrium state nloc.!/ given by Eq. (97) (blue). Source: from [181]

a set of additional integral invariants, Qj D R
�j.!/ n!.z/ d!, would still lead to a

(generalized) Rayleigh-Jeans distribution,

neq.!/ D T

k.!/CP
j 	j�j.!/ � �; (98)

where 	j refer to the Lagrangian multipliers associated to the conservation of
Qj [185]. The local invariant J! thus leads to an equilibrium spectrum nloc.!/ of
a different nature than the generalized Rayleigh-Jeans spectrum (98).

One may wonder whether the local invariant J! may generate the existence of
integral invariants of the kinetic equation (i.e., Eqs. (90), (91) with m D 3). We can
easily verify that Q D R

�! n!.z/ d! is a conserved quantity of the kinetic equation
whenever �! satisfies the following relation

�!1 C �q�!1 D �!2 C �q�!2 ; (99)

for any couple of frequencies .!1; !2/. In other terms, it is sufficient that �! C�q�!
does not depend on ! for Q to be a conserved quantity of the kinetic equation. A
simple way to satisfy this condition is to construct �! as follows, �! D '! � 'q�! .
In this way, regardless of the particular choice of the function '! ,

Q D
Z �

'! � 'q�!
	
n!.z/ d!; (100)



268 A. Picozzi et al.

is a conserved quantity of the kinetic equation. This shows that the existence of a
local invariant (J!) can generate an infinite set of integral invariants Q.

5.4 Emergence of Rogue Waves from Optical Turbulence

In this section we briefly comment some open interesting issues related to optical
wave turbulence in fibers. An interesting problem concerns a proper description
of the emergence of extreme rogue waves (RW) from a turbulent environment. A
rather commonly accepted opinion is that RWs can be conveniently interpreted in
the light of exact analytical solutions of integrable nonlinear wave equations, the
so-called Akhmediev breathers, or more specifically their limiting cases of infinite
spatial and temporal periods, the rational soliton solutions, such as Peregrine and
higher-order solutions of the integrable 1D NLSE—see the recent reviews [27, 28].
Rational soliton solutions can be regarded as a coherent and deterministic approach
to the understanding of RW phenomena. On the other hand, RWs are known to
spontaneously emerge from an incoherent turbulent state [29, 139, 186–190]. This
raises a difficult problem, since the description of the turbulent system requires a
statistical WT approach, whereas rational soliton solutions are inherently coherent
deterministic structures. This problem was addressed in the optical fiber context in
[172, 173] by considering a specific NLSE model that exhibits a quasi-soliton turbu-
lence scenario, a feature that can be interpreted in analogy with wave condensation,
see Sect. 5.1.4. It was shown that the deterministic description of rogue wave events
in terms of rational soliton solutions is not inconsistent with the corresponding
statistical WT description of the turbulent system [173]. It is important to stress
that the emergence of RW events was shown to solely occur near by the transition
to (quasi-)soliton condensation. From a different perspective, the fluctuations of
the condensate fraction in 2D wave condensation have been recently computed
theoretically, revealing that large fluctuations solely occur near by the transition
to condensation, while they are significantly quenched in the strongly condensed
Bogoliubov regime (small ‘temperature’), and almost completely suppressed in the
weakly nonlinear turbulent regime (high ‘temperature’). This result is consistent
with the general idea that nearby second-order phase-transitions, physical systems
are inherently sensitive to perturbations and thus exhibit large fluctuations. One can
then address a possible alternative point of view on the question of the spontaneous
emergence of rogue waves from a conservative turbulent environment: Is it possible
to interpret the sporadic emergence of RW events as the natural large fluctuations
inherent to the phase transition to soliton condensation? This issue may pave the
way for a statistical mechanics approach based on the idea of scaling and universal
theory of critical phenomena to the description of RWs.
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Integrable Turbulence with Nonlinear Random
Optical Waves

Stéphane Randoux and Pierre Suret

Abstract The field of integrable turbulence deals with the general question of
statistical changes that are experienced by ensembles of nonlinear random waves
propagating in systems ruled by integrable equations. In this chapter, we specifi-
cally focus on the one-dimensional nonlinear Schrödinger equation that describes
quantitatively very well experiments performed with single mode fibers and optical
waves randomly fluctuating in time. As a result of nonlinear propagation, the power
spectrum of the random wave broadens and takes exponential wings both in focusing
and in defocusing propagation regimes. Heavy-tailed deviations from gaussian
statistics are observed in focusing regime while low-tailed deviations from gaussian
statistics are observed in defocusing regime. After some transient evolution, the
wave system is found to exhibit a statistically stationary state in which neither the
probability density function of the wave field nor the spectrum change with the
evolution variable. Separating fluctuations of small scale from fluctuations of large
scale both in focusing and defocusing regime, we evidence the phenomenon of
intermittency; i.e., small scales are characterized by large heavy-tailed deviations
from Gaussian statistics, while the large ones are almost Gaussian.

1 Introduction

Interaction among waves in nonlinear media have been studied for decades in many
fields of physics, such as nonlinear acoustics, plasma physics, hydrodynamics or
nonlinear optics. Wave turbulence (WT) is the common designation for the fields
of dispersive waves which are engaged in stochastic nonlinear interaction over a
wide range of scales [1, 2]. Numerous examples of WT can be found in ocean,
plasmas or Bose-Einstein condensates [1]. Despite the extremely large literature
on turbulence, there is still no complete and satisfying theory about statistics of
nonlinear incoherent waves.
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In the restricted case of weakly nonlinear interaction and nearly gaussian
statistics, the WT theory provides a framework for the statistical description of
turbulence in non-integrable wave systems dominated by resonant interactions [1–
3]. WT theory is based on a perturbation expansion procedure in which linear
dispersive effects are supposed to dominate nonlinear effects. In this way a large
separation of the linear and nonlinear length scales takes place, so that the statistics
of the field can be assumed to be approximately Gaussian. This allows one to
achieve the closure of the infinite hierarchy of moment’s equations, thus leading
to a WT kinetic description of the evolution of the power spectrum of the field (i.e.
the second-order moment of the gaussian field) [4, 5]. It is now well established
that WT theory provides a detailed description of the process of thermalization and
condensation of optical waves that occur in nonintegrable wave systems ruled by
2D or 3D nonlinear Schrödinger equations (NLSEs) [6, 7]. WT theory has been
also considered in purely 1D wave systems in various circumstances [8–10]. One
of the most important developments in WT theory is the discovery made by V.E.
Zakharov in 1965 of a new type of solutions of kinetic equations corresponding
to a constant energy flux through scales. These solutions are called Kolmogorov-
Zakharov spectra.1

It is only relatively recently that optics has emerged as a field of research that
is able to provide a better understanding of the origins of the onset of turbulence
[11–16]. In particular, a laminar-turbulent transition has been recently observed in a
fiber laser, a dissipative wave system described by a generalized and non-integrable
one dimensional NLSE (1D-NLSE) [17].

Optics is also a field of research that is very favorable for the investigation of
the spatio-temporal properties of wave systems exhibiting an integrable or a nearly-
integrable dynamics. In this respect, the pure and integrable 1D-NLSE plays a very
specific role. For instance, breathers on finite background that constitute particular
solutions of the focusing 1D-NLSE have been experimentally observed in optics
and in hydrodynamics and they are now considered as prototypes for rogue waves
[18–26]. Ubiquitous phenomena such as wave breaking or intermittency [1, 27–30]
typifying many hydrodynamical experiments have also been observed very recently
in integrable optical wave systems ruled by the 1D-NLSE [31, 32].

The theoretical framework combining a statistical approach of random waves
together with the property of integrability of the 1D-NLSE is known as integrable
turbulence. This emerging field of research recently introduced by V. Zakharov
relies on the analysis of complex phenomena found in nonlinear random waves
systems described by an integrable equation [15, 32–37]. For these integrable
systems, given an initial condition, the spectrum generally relaxes to a statistically
stationary state that in general is different from the standard thermal equilibrium

1Kolmogorov-Zakharov cascade may appear when the spectrum (i.e. scales) of nonlinear random
waves can be divided into three parts: a pumping spectral range (with an external source of energy,
often at large scales), a spectral range with dissipation (often at small scales) and an intermediate
inertial range with no dissipation [1, 2]. On the other hand, thermalization emerges in some systems
without dissipation and pumping.
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characterized by the equipartition of energy.2 The prediction of the spectra of such
final state and of its statistical properties is the objective of the works undertaken in
the field of integrable turbulence.

Non-integrability of the model equation is usually considered as a prerequisite
for the applicability of WT theory, because it implies a process of irreversible
diffusion in phase space that is consistent with the formal irreversibility of the
kinetic equation. On the other hand, the dynamics of integrable systems having a
low number of degrees of freedom is essentially periodic in time, reflecting the
underlying regular phase-space of nested-tori. Applying the usual WT theory to
the integrable 1D scalar NLSE, all collision terms in the kinetic equation vanish
identically at any order [15, 33, 38]. Accordingly, the WT theory predicts that the
spectrum of an incoherent light wave propagating in a single-mode optical fiber does
not evolve during the propagation.

This conclusion has been found to be in contradiction with experiments and
numerical simulations reported in 2006 [39], in which a significant evolution of
the power spectrum of the optical field has been found to occur during propagation
in a single-mode optical fiber [39]. In hydrodynamical numerical simulations
performed with envelope equations and experiments made in water tanks, non
gaussian statistics of the wave height has also been found to emerge from random
initial conditions [40–42].

So far, these behaviors have been only described from a modified treatment of
the traditional WT theory that has been initially proposed by Janssen [43] and that
has been recently applied to optics [12, 15, 38]. The usual WT theory is commonly
used to treat wave systems that are ruled by non integrable equations and in which
the long-time evolution is dominated by resonant interactions among waves (i.e.
Fourier components). However it has been shown that the short term evolution
of WT can be influenced by non-resonant terms [44]. In the revisited treatment
of WT theory, “quasi-kinetic” equations that describe the evolution of the wave
spectrum are derived by keeping the contribution of non resonant terms.3 This WT
treatment describes adequately the transient evolutions and the stationary state of
the power spectrum and of the PDF of field fluctuations that are observed in the
weakly nonlinear regime[15, 38, 43].

There are now many open questions regarding integrable turbulence in the
strongly nonlinear regime that is extensively discussed below. The inverse scattering
theory (IST) provides a natural framework for the investigation of statistical

2In the process of wave thermalization, the “equipartition of energy” corresponds to the equiparti-
tion of linear kinetic energy (linear part of the Hamiltonian).
3The resonances in wave mixing are determined by double equalities involving frequencies and
wave vectors of Fourier components. In the case of one dimensional four-wave mixing, these
equalities are k1 C k2 D k3 C k4 and !1.k1/ C !2.k2/ D !3.k3/ C !4.k4/. !.k/ is the linear
dispersion relation. For Eq. (1) where !.k/ D k2 , it is straightforward to show that the two resonant
conditions imply k1 D k3 or k1 D k4 which is a trivial interaction (no energy is exchanged among
different Fourier components). In the case of the integrable 1D-NLSE, the changes of the spectrum
and of the statistical properties are thus only induced by non resonant terms.
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properties of nonlinear wave systems ruled by integrable equations. In particular,
IST has been used in [45] to describe some experiments examining nonlinear
diffraction of localized incoherent light beams [46]. The theoretical description of
these experiments can be made by using standard tools of the IST because it is
fully compatible with the central assumption of IST that the wave field decays at
infinity. IST has thus been used both in the focusing and in the defocusing regimes
to determine some mathematical expressions for the PDF of the wave field [45].

Note that the IST has also been introduced as a tool for nonlinear Fourier analysis
of random wave trains [47–49]. This tool has been successfully implemented in
several circumstances to determine the content of random wave trains in terms of
nonlinear oscillating modes. In particular, the IST analysis has been used to analyze
the soliton content in freak (rogue) wave time series [50] and more recently, to
evidence the presence of soliton turbulence in shallow water ocean surface waves
[51]. Recently, we have also shown that numerical IST analysis can be implemented
to get a highly accurate spectral signature of noise-generated structures that are
found in the 1D-NLSE problem with some random initial conditions [52].

In this Chapter, we review a number of results recently obtained by the authors
from optical fiber experiments and numerical simulations [32, 37, 53] in the
anomalous and normal dispersion regime. The dynamics of the waves in the
considered fibers is described with high accuracy by the focusing and defocusing
1D-NLSE. In the focusing regime, the idea is to implement optical fiber experiments
conceptually analogous to the water tank experiment described in [41] where waves
with a finite spectral bandwidth and random phases are generated at one end of
the tank and the evolution of the statistical properties of the wave field is followed
along the flume. Using an original setup to overcome bandwidth limitations of usual
detectors, we evidence strong distortions of the statistics of nonlinear random light
characterizing the occurrence of optical rogue waves in integrable turbulence.

In the defocusing regime, modulational instability is not possible and the
evolution of incoherent waves does not lead to the formation of rogue waves. The
statistics of wave intensity, initially following the central limit theorem, changes
along the fiber resulting in a decrease of the tails of the PDF. This implies that
the probability of finding a rogue wave is lower than the one described by linear
theory. Implementing an optical filtering technique, we also report on the statistics
of intensity of light fluctuations on different scales and we observe that the PDF
of the wave intensity show tails that strongly depend on the scales. This reveals
the phenomenon of intermittency, previously mentioned, that is similar to the
one reported in several other wave systems, though fundamentally far from being
described by an integrable wave equation.

The chapter is organized as follows: numerical simulations of focusing and
defocusing 1D-NLSE are first considered and described in Sect. 2. Optical fiber
experiments designed to investigate changes in the statistics of random light fields
and showing results in agreement with simulations are presented in Sect. 3. In
Sect. 4, we show that the integrable wave system under consideration exhibits a
phenomenon of intermittency both in focusing and defocusing regime. In Sect. 5,
we summarize our work and we discuss open questions about integrable turbulence.
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2 Spatio-Temporal, Spectral and Statistical Features Arising
from Nonlinear Propagation of Random Waves in Systems
Ruled by the Integrable 1D-NLSE

2.1 General Framework and Description of the Random
Initial Condition

Our study enters within the general framework of the integrable 1D-NLSE4:

i t C  xx C 2 
 j j2  D 0 (1)

where  .x; t/ is the complex wave envelope. The parameter 
 determines the
focusing (
 D C1) or defocusing (
 D �1) nature of the propagation regime.
In nonlinear fiber optics, it is relatively easy to explore each of the two propa-
gation regimes just by changing either the fiber or the wavelength of light [54].
Equation (1) conserves the energy (or Hamiltonian) H D HL C HNL that has a
nonlinear contribution HNL D �
 R j .x; t/j4dx and a linear (kinetic) contribu-
tion HL D R

k2jb .k; t/j2dk, the Fourier transform being defined as b .k; t/ D
1=

p
2�
R
 0.x; t/e�ikxdx. Equation (1) also conserves the number of particules (or

power) N D R j .x; t/j2dx and the momentum P D R
kj .k; t/j2dk.

In the study presented here, the initial conditions that are used are non-decaying
random complex fields. Thus we examine a situation that is very different from the
problem of nonlinear diffraction of spatially incoherent waves already considered
in [45, 46, 55, 56]. In these papers, the nonlinear propagation of a speckle pattern
of limited and finite spatial extension is studied in focusing and defocusing media.
On the other hand we consider here continuous random waves of infinite spatial
extension. This corresponds for instance to an experimental situation in which a
partially coherent and continuous (i.e. not pulsed) light source of high power is
launched inside a single-mode optical fiber [32, 37]. In numerical simulations, the
random waves are confined in a box of size L and periodic boundary conditions
( .x D 0; t/ D  .x D L; t/) are used to describe their time evolution [1].

The random complex field  .x; t D 0/ D  0.x/ used as initial condition here is
made from a discrete sum of Fourier components :

 .x; t D 0/ D  0.x/ D
X
n

b 0ne
ink0x: (2)

4We use in this chapter the usual and natural variables .t; x/. Note that in single optical fiber
experiments, the time t has to be replaced by the evolution variable z that represents the propagation
distance along the fiber. The variable of x “becomes” the physical time t. Time and space are thus
exchanged and in this case the 1D-NLSE takes the form of Eq. (5).
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with b 0n D 1=L
R L
0
 0.x/e�ink0xdx and k0 D 2�=L. The Fourier modes b 0n D

jb 0njei�0n are complex variables. In the random phase and amplitude (RPA) model,
generation of a random initial complex field is achieved by taking jb 0nj and �0n as
randomly-distributed variables [1]. Here, we will mainly use the so-called random
phase (RP) model in which only the phases �0n of the Fourier modes are considered
as being random [1]. In this model, the phase of each Fourier mode is randomly and
uniformly distributed between �� and � . Moreover, the phases of separate Fourier
modes are not correlated so that< ei�0nei�0m >D ınm. In the previous expression, the
brackets represent an average operation made over an ensemble of many realizations
of the random process. ınm is the Kronecker symbol defined by ınm D 1 if n D m
and ınm D 0 if n ¤ m.

With the assumptions of the RP model above described, the statistics of the
initial field is homogeneous, which means that all statistical moments of the initial
complex field  0.x/ do not depend on x [11, 12]. The power spectrum n0.kn/ of the
random field  0.x/ then reads as :

<b 0nb 0m >D n0n ınm D n0.kn/: (3)

with kn D n k0. In the limit where L ! 1, the frequency separation between
two neighboring frequency components kn and knC1 tends to zero and the discrete
spectrum n0.kn/ becomes a continuous spectrum n0.k/.

The RP model is often used in the contexts of hydrodynamics where the power
spectrum n0.k/ is given by the so-called JONSWAP spectrum [57, 58]. It has also
been used in optics where simple gaussian or sech profiles are often used for the
function n0.k/ [15, 32, 37].

In this section, we consider a random complex initial field having a gaussian
optical power spectrum that reads

n0.k/ D n0 exp

�
�
�

k2

�k2

��
(4)

where �k is the half width at 1=e of the power spectrum. Figure 1 shows a typical
example of a partially coherent complex field generated using the RP model and a
power spectrum given by Eq. (4). Figure 1b shows that the values of the spectral
phases �0.k/ are randomly distributed between �� and � . Figure 1c shows the
random evolution of the real part R0.x/ D <. 0.x// of the initial field that is
computed from the spectra shown in Fig. 1a, b. We do not present here the evolution
of the imaginary part I0.x/ D =. 0.x// of the initial field because it is qualitatively
very comparable to what is shown in Fig. 1c. However it is important to notice
that the RP model produces a random field having real and imaginary parts that
are statistically independent, i.e. < R0.x/I0.x/ >D 0 8 x. The spatial evolution of
the power P0.x/ D j 0.x/j2 D R20.x/ C I20.x/ of the random initial field is shown
in Fig. 1d. Note that the numerical values of the parameters n0 and �k have been
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Fig. 1 Reproduced from [53] (a) Gaussian power spectrum n0.k/ of the initial condition such as
defined by Eq. (4) (�k D 0:5, n0 D 1:129). (b) Spectral distribution of the phases �0.k/ of the
Fourier modes used to compute the random initial field  0.x/. (c) Real part R0.x/ D <. 0.x// and
(d) power P0.x/ D j 0.x/j2 of the random field computed from spectra shown in (a), (b). (e) PDF
of R0.x/ and (f) PDF of P0.x/ showing that the initial condition has a gaussian statistics

chosen in such a way that the number of particules N D 1=L
R L
0

j .x; t/j2dx is equal
to unity.

As previously described, the random complex field 0.x/ used as initial condition
is produced from the linear superposition of a large number of independent Fourier
modes having randomly distributed phases. As stated by the central limit theorem,
the statistics of the random process produced from such a superposition follows
the normal law. The RP model thus produces a complex field having quadratures
that are statistically independent and that have the same gaussian statistics. It
is straightforward to prove that the statistics of power fluctuations P0 follows
the exponential distribution [36, 59]. Note that the PDF for the fluctuations of
the amplitude A0.x/ D j 0.x/j is given by the Rayleigh distribution defined by
PDFŒA0= < A0 >� D A0= < A0 > : exp.�A0= < A0 >/ [36, 59].
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In order to illustrate these statistical features from numerical simulations, we
have performed the analysis of the statistical properties of the complex field
generated from the RP model by producing an ensemble of 104 realizations of the
random initial field. From this ensemble, it is in particular possible to compute
the PDF for the fluctuations of R0.x/ D <. 0.x// and of P0.x/ D j 0.x/j2.
Figure 1e shows that the PDF of R0.x/= < R0.x/ > is gaussian. The PDF of the
normalized imaginary part I0.x/= < I0.x/ > of the complex field is not shown
here but it is rigorously identical to the PDF of R0.x/= < R0.x/ >. As it is
illustrated in Fig. 1f, the PDF of the power is given by the exponential distribution,
i.e. PDFŒP0= < P0 >� D exp.�P0= < P0 >/.

2.2 Focusing Regime

In this Section, we consider the focusing regime (
 D C1) and we use numerical
simulations of Eq. (1) to investigate the propagation of a partially coherent wave
generated at t D 0 by the random complex field described in Sect. 2.1. We will
consider the spatio-temporal dynamics of the partially coherent wave and we will
also discuss spectral and statistical changes occurring in time.

Our numerical simulations have been performed by using a pseudo-spectral
method working with a step-adaptative algorithm permitting to reach a specified
level of numerical accuracy. The numerical simulations are performed by using a
box of size L D 257:36 that has been discretized by using 4096 points. Statistical
properties of the random wave are computed from an ensemble of 104 realizations
of the random initial condition.

Figure 2a shows the spatio-temporal evolution of the partially-coherent wave
seeded by a random initial field having properties that are described in Sect. 2.1
and that are synthesized in Fig. 1. At the initial stage of the nonlinear evolution
(t 
 0), the power j .x; t/j2 of the wave is slowly and randomly modulated. The
spatial scale of the fluctuations of j .x; t/j2 at t 
 0 is determined by �k and it is
typically around 10 in the simulations shown in Fig. 2 (see also Fig. 1d). Numerical
simulations show that series of peaks emerge from the random initial condition.
The density of these peaks is higher is those regions of space where the complex
field exhibits high peak power fluctuations at the initial time t D 0, see e. g. the
region where x 2 Œ�50;�40� in Fig. 2 and in Fig. 3a, c, e. While the localized peaks
shown in Fig. 2a drift with small velocities in the .x; t/ plane, their peak power
increases with time. This increase of the peak power of the localized structures goes
simultaneously with a reduction of their spatial width. The typical spatial scale of
the power fluctuations evolves from a value of 
 10 at initial stage (t D 0) to the
healing length of 
 1 at long evolution time (t > 10) (see Fig. 3a, c, e).

A clear signature of the change in the fluctuation scale can be observed in the
Fourier space. As shown in Fig. 3b, d, f, the power spectrum jb .k; t/j2 of the random
wave is indeed found to significantly broaden with time. Let us emphasize that the
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Fig. 2 Reproduced from [53]. Numerical simulations of Eq. (1) in focusing regime (
 D C1).
(a) Spatio-temporal evolution of the power j .x; t/j2 of the wave while starting from the
random complex field having a gaussian power spectrum and a gaussian statistics, see Fig. 1. (b)
Corresponding time evolution of linear (kinetic) energy HL and of nonlinear energy HNL

power spectrum of the wave broadens while always keeping exponentially decaying
wings.

The evolution of the typical space scales and peak powers of the random
fluctuations that is described above goes together with a process of energy balance
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Fig. 3 Reproduced from [53]. Numerical simulations of Eq. (1) in focusing regime (
 D C1).
Spatial evolution of the power j .x; t/j2 of the random wave at times (a) t1 D 0:24, (c) t1 D 2:44,
(e) t1 D 16:04. Power spectra (green lines) j .k; t/j2 of the random wave at times (b) t1 D 0:24,
(d) t1 D 2:44, (f) t1 D 16:04. The spectra plotted in blue lines represent the gaussian power
spectrum of the random initial complex field defined by Eqs. (3) and (4)

between linear and nonlinear effects. Figure 2b shows the evolutions in time of
the linear (kinetic) energy HL and of the nonlinear energy HNL that are associated
with the spatio-temporal evolution plotted in Fig. 2a. The wave system is initially
placed in a highly nonlinear regime in which the nonlinear energy is one order
of magnitude greater than the linear energy (jHNLj ' 10jHLj). As a result of
nonlinear propagation, linear and nonlinear effects come into balance and after
a short transient evolution, the wave system reaches a state in which linear and
nonlinear energies have the same order of magnitude (jHNLj ' 2jHLj, see Fig. 2b).

It is interesting to compare the spatio-temporal evolution shown in Fig. 2a with
the one shown in Fig. 2a of [26]. In [26], the authors study the nonlinear evolution in
space and time of a condensate perturbated by a small noise, i. e.  0.x/ D 1C �.x/
where j�.x/j << 1 is a small noise with broad spectrum. As shown in Fig. 2a of
[26], the fact that there is only a weak random modulation of the initial condition
gives rise to a spatiotemporal diagram in which localized structures are distributed
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in space and time in a way that is more regular than the random pattern shown
in Fig. 2a of this chapter. Starting from our initial condition with a broad gaussian
spectrum, there are some wide regions of space in which no localized structures are
observable while there are some other regions of space including many localized
structures. As shown in [37], the localized structures emerging from a complex field
having initially a gaussian statistics can be locally fitted by some analytical functions
corresponding to solitons on finite background, such as e. g. the Peregrine soliton.
Fitting procedures implemented in the numerical work presented in [26] have shown
that many solitons on finite background can be also found while seeding the wave
system from a condensate perturbated by a small noise.

Despite localized structures looking like solitons on finite background can
be observed while starting from those two different random initial conditions,
significantly different statistical features are observed at long evolution time. It has
been shown in [36] that gaussian statistics emerges from the nonlinear evolution of
the noisy condensate. As shown in Fig. 4, heavy-tailed deviations from Gaussianity
are contrarily found to emerge from a random complex field having initially a
gaussian statistics [37]. It is an open question to understand how the interplay among
localized structures does not produce the same statistics at long evolution time while
starting from different noisy initial conditions.

Figure 4 shows the time evolution of the PDF of j .x; t/j2. The nonlinear random
field has a statistical evolution in which the PDF of power fluctuations continuously
moves from the exponential distribution (plotted in red line in Fig. 4) to the heavy-
tailed distribution plotted in blue line in Fig. 4. For t > 10, the wave system reaches
a statistical stationary state in which the PDF no longer changes with time [37]. This
statistical stationary state is determined by the interaction of coherent nonlinear
structures such as for instance solitons (with zero background) [60], solitons on
finite background (Akhmediev breathers, Peregrine solitons. . . ) [61] and also linear
dispersive radiation [35, 62, 63]. It is now an open question to determine the
mechanisms in integrable turbulence that lead to the establishment of a stationary
state in which statistical properties of the wave system do not change in time. Tools
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Fig. 4 Reproduced from [53]. Numerical simulations of Eq. (1) in focusing regime (
 D C1).
PDF of the power j .x; t/j2 at time t D 0 (red line), t D 0:2 (cyan line), t D 0:4 (magenta line),
t D 10 and t� D 20 (blue line). The PDF is stationary from t � 10, i.e. the PDF plotted in blue
line does not change with time for t > 10
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from the inverse scattering theory could be used to investigate this question of
fundamental importance [45, 52, 55, 56, 63–65].

2.3 Defocusing Regime

In this Section, we consider the defocusing regime (
 D �1) and we use numerical
simulations of Eq. (1) to investigate the propagation of a partially coherent wave
generated at t D 0 by a random complex field identical to the one used in Sect. 2.2.

Figure 5a shows the spatio-temporal evolution of the partially-coherent wave
seeded by a random initial field identical to the one used in Fig. 2a. Spatiotemporal
features emerging from the nonlinear propagation in defocusing regime drastically
contrast with those found in the focusing regime. Instead of bright localized
structures, we now observe the emergence of dark localized structures propagating
at various speeds in the .x; t/ plane. Figure 6a, b show that the initial stage of
nonlinear evolution is now characterized by a fast decay of the peaks of highest
intensities, see e. g. the region where x 2 Œ�50;�40�. During the initial evolution
of the random wave, the leading and trailing edges of peaks of highest intensities
strongly sharpen. This leads to some gradient catastrophes which are regularized
by the generation of dispersive shock waves (DSWs) [66–69]. As in the focusing
case, the typical spatial scale of the random fluctuations decreases from 
 10 at the
initial stage (t D 0) to the healing length of 
 1 at long evolution time (t > 10). The
stochastic evolution shown in Fig. 6c is determined by the interaction of nonlinear
coherent structures such as dark solitons or DSWs and of linear radiation.

Figure 6b, d, f show that nonlinear propagation in defocusing regime induces
a spectral broadening of the random wave. This spectral broadening phenomenon
is quantitatively less pronounced than the one observed in the focusing regime,
see Fig. 3b, d, f. However the power spectrum of the wave broadens while always
keeping exponentially decaying wings, as in the focusing regime.

The spatiotemporal evolution shown in Fig. 5a and in Fig. 6a, c, e goes together
with a process of energy balance between linear and nonlinear effects. Figure 5b
shows the time evolutions of the linear (kinetic) energy HL and of the nonlinear
energy HNL that are associated with the spatio-temporal evolution plotted in Fig. 5a.
The wave system is initially placed in a highly nonlinear regime in which the
nonlinear energy is one order of magnitude greater than the linear energy (HNL 

10HL). As in the focusing regime, linear and nonlinear effects come into balance
and after a short transient evolution, the wave system reaches a state in which HNL

and HL have the same order of magnitude, see Fig. 5b.
In the defocusing regime, the nonlinear random field has a statistical evolution

in which the PDF of power fluctuations continuously moves from the exponential
distribution (plotted in red line in Fig. 7) to the low-tailed distribution plotted in
blue line in Fig. 7. As in the focusing regime, the wave system exhibits a statistical
stationary state and the PDF computed at t D 10 (magenta line in Fig. 7) does not
change anymore with time [32]. This statistical stationary state is determined by
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Fig. 5 Reproduced from [53]. Numerical simulations of Eq. (1) in defocusing regime (
 D
�1). (a) Spatio-temporal evolution of the power j .x; t/j2 of the wave while starting from the
random complex field having a gaussian power spectrum and a gaussian statistics, see Fig. 1. (b)
Corresponding time evolution of linear (kinetic) energy HL and of nonlinear energy HNL

the interaction of coherent nonlinear structures such as for instance dark solitons,
dispersive shock waves and also linear radiation. As for the focusing regime, it is an
open question to determine the mechanisms in integrable turbulence that lead to the
establishment of a stationary state in which statistical properties of the wave system
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Fig. 6 Reproduced from [53]. Numerical simulations of Eq. (1) in defocusing regime (
 D �1).
Spatial evolution of the power j .x; t/j2 of the random wave at times (a) t1 D 0:24, (c) t1 D 2:44,
(e) t1 D 16:04. Power spectra (green lines) j .k; t/j2 of the random wave at times (b) t1 D 0:24,
(d) t1 D 2:44, (f) t1 D 16:04. The spectra plotted in blue lines represent the gaussian power
spectrum of the random initial complex field defined by Eqs. (3) and (4)
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Fig. 7 Reproduced from [53]. Numerical simulations of Eq. (1) in defocusing regime (
 D �1).
PDF of the power j .x; t/j2 at time t D 0 (red line), t D 0:2 (cyan line), t D 1 (magenta line),
t D 10 and t� D 20 (blue line). The PDF is stationary from t � 10, i.e. the PDF plotted in blue
line does not change with time for t > 10
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do not change in time. Tools of the inverse scattering transform could be of interest
for the investigation of this question [70].

3 Optical Fiber Experiments in Focusing and in Defocusing
Propagation Regimes

Optical fiber experiments provide versatile and powerful tabletop laboratory to
investigate the complex dynamics of 1D-NLSE, hydrodynamic-like phenomena and
the statistical properties of nonlinear random waves [12, 17, 19, 25, 31, 71–74].

One of the most critical constraint of these experiments is the finite spectral
bandwidth of usual detectors. The typical response time of the fastest detector
and oscilloscope is several tens of picoseconds. On the other hand, with the usual
parameters of standard experiments using optical fibers, the typical “healing time”
scale characterizing the equilibrium between the nonlinearity and the dispersion
is around one picosecond [37]. For this reason, the picosecond is also the order of
magnitude of the time scale associated to the power fluctuations of partially coherent
fiber lasers [71, 72, 75].

As a consequence spectral filters are therefore often used to reveal extreme events
in time-domain experiments [32, 74, 76, 77]. In the case of pulsed experiments, it is
possible to evidence shot-to-shot spectrum fluctuations with a dispersive Fourier
transform measurement [74, 78–80]. To the best of our knowledge, up to our
recent works [37, 75], the accurate and well-calibrated measurement of the PDF
characterizing temporal fluctuations of the power of random light with time scale of
the order of picosecond had never been performed.

We have developed an original setup based on asynchronous optical sampling
(OS) which allows the precise measurement of statistics of random light rapidly
fluctuating with time (see Fig. 8).

The “random light” under investigation is a partially coherent wave and it is
called the “signal”. The signal is optically sampled with 140 fs-pulses and the PDF is
computed from the samples. The optical sampling is obtained from the second order
nonlinearity �.2/ in a BBO crystal. The sum-frequency generation (SFG) between
the signal at 	S D 1064 nm and short “pump” pulses having a central wavelength
	P D 800 nm provide samples of the signal at a wavelength 	 D 457 nm. The
full dynamics of the signal cannot be recovered with this asynchronous optical
sampling technique. However this setup enables an accurate measurement of the
PDF of random fluctuations having time scale of the order of 250 fs [37]. Note that
very recently, optical rogue waves emerging in integrable turbulence and having
sub-picosecond time scales have been directly observed with a time microscope
device [81].

The statistical quantity measured in asynchronous optical sampling experiments
is the PDF of the optical power i.e. not the PDF of the maxima or of the wave
height but the PDF of occurrence of each value of optical power. In the experiments
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Fig. 8 Reproduced from [53]. Experimental measurement of the statistics of random light (a)
Principle. Optical sampling of the partially-coherent wave fluctuating with time (the signal) is
achieved from sum frequency generation in a second order (�.2/) crystal. Blue pulses are generated
at 	 D 457 nm from the interaction of the signal with periodic femtosecond pump pulses inside a
�.2/ crystal. PDF is computed from the peak powers of the blue pulses. (b) Nonlinear propagation
in optical fiber. The initial partially coherent light is launched inside a single mode optical fiber
either in the focusing (fiber 1) or defocusing (fiber 2) regime of dispersion. The statistics and the
spectrum are measured before and after the propagation in the fiber

reported in [37], the linearly polarized partially coherent wave is emitted by a
“continuous” wave (cw) Ytterbium fiber laser at 	S D 1064 nm. This cw laser emits
numerous (typically 104) uncorrelated longitudinal modes. The reader can refer to
[37] for the details of the experimental setup and of the statistics measurement
procedure.

We present results obtained with two different fibers (fiber 1 and 2) having
opposite sign of the group velocity dispersion at the wavelength of the signal
	S D 1064 nm. The fiber 1 is a 15 m-long highly nonlinear photonic crystal
fiber (provided by Draka France company) with a nonlinear third order coefficient
� ' 50W�1 km�1 and a group velocity dispersion coefficient ˇ2 ' �20 ps2=km.
The fiber 2 is a 100 m-long polarization maintaining fiber with a nonlinear third
order coefficient � ' 6W�1 km�1 and a group velocity dispersion coefficient
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ˇ2 ' C20 ps2=km. We launch a mean power < P >D 0:6W in the experiments
performed with the fiber 1 (focusing case) and a mean power < P >D 4:W in
the experiments performed with the fiber 2 (defocusing case). Note that the results
obtained with the fiber 1 have been presented in detail in [37] whereas the results
obtained with the fiber 2 are new.

We first measure the PDF at the output of the laser. In all experiments presented
in this letter, the mean output power of the Ytterbium laser is fixed at hPi D 10W.
At this operating point, the statistics of the partially coherent wave follows the
normal law. Indeed, as plotted in red in Fig. 9c, d, the PDF of the normalized power
P=hPi is very close to the exponential function. Assuming that the real part and the
imaginary parts are statistically independent, this exponential distribution of power
corresponds to a gaussian statistics of the field. It is important to note that the dashed
black lines in Fig. 9c, d are not a fitted exponential function but represent the exact

Fig. 9 Reproduced from [53]. Experiments. (a), (b): Optical spectra. Input spectrum (red line).
Spectrum at the output of fiber 1 (blue line) and fiber 2 (green line). The circles represents optical
spectra computed from numerical simulation of 1D-NLSE. (c), (d): PDF of normalized optical
power P=hPi plotted in logarithmic scale. Normalized exponential distribution PDFŒP= < P >

� D exp.�P= < P >/ (black dashed line). PDF of the input random light (red line). PDF of the
light at the output of the fiber 1 (blue solid line) and at the output of the fiber 2 (green solid line).
The dashed lines represent the PDF computed from numerical simulation of 1D-NLSE with the
parameters of the experiments. The inset represents the same PDF in vertical linear scale
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normalized PDFŒP=hPi� D exp.�P=hPi/. To the best of our knowledge, PDF of
so rapidly fluctuating optical signals has never been quantitatively compared to the
normalized exponential distribution.

We use the output of the laser as a random source and we launch the partially
coherent signal into optical fibers 1 and 2. Experiments have been carefully designed
to be very well described by the 1D-NLSE. In particular, the signal wavelength
	s D 1064 nm is far from the zero-dispersion wavelength (	0 ' 970 nm for the
fiber 1 and 	0 > 1300 nm for the fiber 2). Moreover the optical spectral widths (see
Fig. 9a, b) remain sufficiently narrow to neglect stimulated Raman scattering (SRS)
and high-order dispersion effects. The linear losses experienced by optical fields in
single pass in the fibers are negligible. These total losses are around 0:3% in the
fiber 1 and around around 2:5% in the fiber 2.

Despite the broadening of the optical spectrum is of nearly the same importance
in focusing and in defocusing regimes (see Fig. 9a, b) our experiments reveal that
the distortions of the statistics of the random waves strongly depend on the sign of
the group velocity dispersion coefficient.

The experiments performed in the focusing regime (fiber 1) reveal the occurrence
of numerous extreme events (RW) (see blue curve in Fig. 9c). The comparison
between the initial PDF (see red line in Fig. 9c) and the output PDF (see blue
curve 9c) shows an impressive change in the statistical distribution of optical power.
The initial field follows the normal law and its PDF is an exponential function
whereas the output PDF of optical power exhibits a strong heavy-tail.

On the other hand, the PDF experimentally measured at the output of fiber 2 in
the defocusing regime exhibits a very low tail (see Fig. 9d). Light fluctuations of a
high power are found with a probability that has been strongly reduced as compared
to the normal law. Moreover, contrary to the initial exponential distribution, the most
probable value for the power is not the zero value (see inset of Fig. 9d).

Numerical simulations show that experiments presented above are very well
described by the integrable 1D-NLSE. The initial conditions are computed from
the random phase assumption as in Sect. 2.1. We have performed Monte Carlo
simulations with ensemble average over thousands of realizations. We integrate the
1D-NLSE with experimental parameters:

i
@ 

@z
D ˇ2

2

@2 

@t2
� � j j2 (5)

where ˇ2 is the group velocity dispersion coefficient and � is the effective Kerr
coefficient. Optical spectra and PDFs computed from the numerical integration of
the 1D-NLSE are in quantitative agreement with experiments both in the focusing
and in the defocusing cases (see dashed blue and green lines in Fig. 9).

Moreover, the numerical simulations show that integrable turbulence is char-
acterized by a statistical stationary state both in focusing and defocusing regime
(see Fig. 10). In particular, the average of the nonlinear and linear parts of the
Hamiltonian (hHNLi and hHLi) evolves to constant values (see Fig. 10a, b). Note that
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Fig. 10 Reproduced from [53]. Numerical Simulations. (a) and (b): evolution of the average of
the nonlinear HNL and linear HL Hamiltonians in the focusing (a) and defocusing (b) cases. HNL

and HL are normalized to the value of the Hamiltonian (constant of motion) H D HNL CHL before
the averaging over hundreds of realizations. (c) PDFs computed at different z in the focusing case.
z D 0m (red line), z D 15m (green line, identical to dashed green line in Fig. 9c) and z D 100m
(stationary PDF). (d) PDFs computed at different z in the defocusing case. z D 0m (red line),
z D 100m (blue line, identical to dashed blue line in Fig. 9d) and z D 500m (stationary PDF)

we represent here the average of HNL and HL over hundreds of realizations whereas
the values of HNL and HL computed on only one realization are plotted in Sect. 2.

Figure 10c represents PDFs computed from numerical simulations for different
lengths of propagation in the focusing regime of dispersion. The red line is the PDF
at z D 0m, the blue line is the PDF at z D 15m corresponding to the experiments
(see Fig. 9c) and the black line corresponds at the stationary PDF (computed at
z D 500m). Figure 10d represents PDFs computed from numerical simulations for
different lengths of propagation in the defocusing regime of dispersion. The red line
is the PDF at z D 0m, the blue line is the PDF at z D 100m corresponding to
the experiments (see Fig. 9d) and the black line corresponds to the stationary PDF
(computed at z D 500m).

Note that comparable deviations from gaussian statistics have been reported
in 1D “spatial experiments” in which the transverse intensity profile of optical
beams randomly fluctuates in space [46]. In these spatial experiments performed in
focusing and defocusing regime, the speckle fields are localized and random waves
decay to zero at infinity [45, 46]. IST with usual zero-boundary conditions has been
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used in [45] to describe these experiments. In the long-term evolution of the wave
system with zero boundary conditions, solitons separate from dispersive waves in
the focusing regime. In the defocusing regime, only dispersive waves persist at long
evolution time.

On the contrary, our experiments and numerical simulations are made with non-
zero boundary conditions and with non-localized random waves. This widens the
perspectives of experimental integrable turbulence studies. With random waves
having an infinite spatial extension, solitons and dispersive waves never separate
from each other and they always interact. Moreover breathers and solitons on finite
background can emerge from nonlinear interaction in the focusing regime. In the
defocusing case, the fact that the random field does not decay at infinity means that
dark solitons can be sustained and interact all-together with dispersive waves at any
time (any value of z in our fiber experiments).

As a conclusion of Sect. 3, we have experimentally studied the evolution of the
statistics of random waves whose propagation is very well described by 1D-NLSE
both in focusing and defocusing case.

In the defocusing case, we have experimentally and numerically demonstrated
that the probability of occurrence of large waves decreases as a result of nonlinear
propagation.

In the focusing case, we have evidenced the statistical emergence of RW from
nonlinear propagation of random light. In [37], we have also shown that solitons on
finite background such as Akhmediev breathers, Peregrine solitons or Kuznetsov-
Ma solitons having a short duration and a high power seem to emerge on the top of
the highest fluctuations.

This result may seem surprising because Akhmediev breathers correspond to the
nonlinear stage of modulational instability when a small sinusoidal perturbation is
added to an infinite plane wave. However, observation of structures very similar
to solitons on finite background in the case of partially coherent waves with
100 % of modulation may be related to the theoretical results in [82] which prove
the Peregrine soliton emerges on the top of a single hump (with zero boundary
conditions) in the weak dispersion limit.

This strengthens the idea that the emergence of deterministic solutions of 1D-
NLSE such as breathers on finite background in nonlinear random fields is a
major mechanism for the formation of rogue waves [24, 25, 61, 83, 84]. Note that
the emergence of such coherent structures in incoherent fields has been already
theoretically studied in non integrable wave turbulence [85, 86] and in integrable
turbulence emerging from a modulationaly unstable condensate [34, 36, 61]. As a
conclusion, the identification of the structures and the mechanism of their formation
is a wide and open question.

Note finally that in one dimensional deep water experiments, relatively small
deviations from Gaussianity have been observed and interpreted in the framework
of wave turbulence theory [43, 87, 88]. On the contrary, our optical fiber setup
provides an accurate laboratory for the exploration of strongly nonlinear random
wave systems ruled by the 1D-NLSE.
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4 Separation of Scales and Intermittency Phenomenon

Statistical features presented in Sect. 2 and in Sect. 3 are relevant to global random
fields in the sense that all the fluctuations scales of the random waves are taken into
account and contribute to the statistics. However, separating large scales from small
scales is known to provide rich statistical information about nonlinear systems of
random waves. In this respect, the phenomenon of intermittency is defined in the
general context of turbulence as a departure from the Gaussian statistics that grows
increasingly from large scales to small scales [27].

Following the definition given by Frisch in [27], a random function R.x/ of space
x is defined as being intermittent when it displays some activity over a fraction
of space that decreases with the scale under consideration. Considering stationary
random processes, the intermittency phenomenon can be evidenced and quantified
by using spectral filtering methods. The existence of deviations from Gaussianity
is usually made through the measurement of the kurtosis of the fluctuations that
are found at the output of some frequency filter. Considering the high-pass filtered
signal R>� .x/ defined in the spatial domain as

R.x/ D
Z

dkeikx QR.k/; (6)

R>� .x/ D
Z

jkj>�
dkeikx QR.k/; (7)

the random function R.x/ is intermittent at small scales if the kurtosis:

�.�/ D h.R>� .x//4i
h.R>� .x//2i2

(8)

grows without bound with the filter frequency � [27].
Although we are going to use here the definition of intermittency given by

Frisch [Eqs. (6)–(8)], it should be emphasized that the exact nature of the spectral
filtering process is not of a fundamental importance and that the intermittency
phenomenon can also be evidenced from the use of various frequency filters.
Spectral fluctuations can be examined at the output of an ideal one-mode spectral
filter passing only a single Fourier component [1, 30]. Time fluctuations at the output
of bandpass frequency filters can also be considered [27, 32, 89]. PDFs of second-
order differences of the wave height have also been measured in wave turbulence
[28]. Using this kind of filtering techniques, the phenomenon of intermittency has
been initially reported in fully developed turbulence [27] but it is also known to
occur in wave turbulence [28–30], solar wind [90] or in the Faraday experiment [91].
So far, the intermittency phenomenon has been ascribed to physical systems that are
described by non-integrable equations. We are going to use numerical simulations
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of Eq. (1) to show that intermittency is a statistical phenomenon that also occurs in
the field of integrable turbulence [32].

Taking the wave system extensively described in Sect. 2, we now consider the
spatial fluctuations of the real part <. .x; t�// of the complex field  .x; t�/ that
has reached the stationary statistical state at t� D 20. In other words, the filtering
process and the statistical treatment defined by Eqs. (6)–(8) are now applied to the
random variable R.x/ D <. .x; t�//. Spatial and statistical features found at the
output of the highpass frequency filter are shown in Fig. 11 for the focusing regime.

When � D 0, the random process R.x/ is not filtered and Fig. 11a shows the
spatial evolution of the random variable R.x/= < R.x/ >D <. .x; t�//= <

<. .x; t�// > in this situation. Figure 11d represents the corresponding PDF
of R.x/= < R.x/ >. Without any filtering process, the heavy-tailed deviations
from Gaussianity shown in Fig. 11d are identical to those already shown in Fig. 4
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Fig. 11 Reproduced from [53]. Numerical simulations of Eq. (1) in the focusing regime (
 D C1)
for t� D 20. (a) Spatial fluctuations of R.x/= < R.x/ >D <. .x; t�//= < <. .x; t�// > that are
found at the output of an ideal highpass frequency filter having a cutoff frequency � D 0 [Eq. (6)]
and (d) corresponding PDF of R.x/= < R.x/ >. (b) and (e), same as (a) and (d) for � D 1. (c) and
(f), same as (a) and (d) for � D 2. The insets in (a), (b), (c) represents the Fourier power spectra
of the random fields plotted in (a), (b), (c)
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but for j .x; t�/j2. Increasing the cutoff frequency � of the ideal highpass filter
[Eq. (6)], fluctuations of smaller and smaller scales are observed at the output of the
highpass filter together with peaks of higher and higher amplitudes, see Fig. 11b, c.
Figure 11e, f show that deviations from Gaussianity become heavier when the cutoff
frequency � of the highpass filter is increased. These statistical features represent
qualitative signatures of the intermittency phenomenon. Computing the kurtosis
�.�/ of R.x/ D <. .x; t�// for increasing values of the cutoff frequency �, we
find a monotonic increase that complies with the definition of the intermittency
phenomenon given by Frisch, see Fig. 13a [27].

As shown in Fig. 12, features qualitatively similar to those described for the
focusing regime are found in the defocusing regime. Figure 12a (resp. Fig. 12d)
shows the spatial evolution (resp. the PDF) of R.x/= < R.x/ >D <. .x; t�//= <
<. .x; t�// > for � D 0, when the random process is not filtered. The low-tailed
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Fig. 12 Reproduced from [53]. Numerical simulations of Eq. (1) in the defocusing regime (
 D
�1) for t� D 20. (a) Spatial fluctuations of R.x/= < R.x/ >D <. .x; t�//= < <. .x; t�// >
that are found at the output of an ideal highpass frequency filter having a cutoff frequency � D 0

[Eq. (6)] and (d) corresponding PDF of R.x/= < R.x/ >. (b) and (e), same as (a) and (d) for � D 1.
(c) and (f), same as (a) and (d) for � D 2. The insets in (a), (b), (c) represents the Fourier power
spectra of the random fields plotted in (a), (b), (c)
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Fig. 13 Reproduced from
[53]. Numerical simulations
of Eq. (1) for t� D 20.
Evolution of the kurtosis � as
a function of the cutoff
frequency � of the highpass
filter defined by Eq. (6). (a)
Focusing regime (
 D C1).
(b) Defocusing regime
(
 D �1)
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deviations from Gaussianity shown in Fig. 12d are identical to those already shown
in Fig. 7 but for j .x; t�/j2. They characterize the stationary statistical state found in
the defocusing regime. Increasing the cutoff frequency � of the ideal highpass filter
[Eq.(6)], fluctuations of smaller and smaller scales are observed at the output of the
highpass filter together with peaks of higher and higher amplitudes, see Fig. 12b, c.
Figure 12e, f show that deviations from PDF computed for � D 0 become heavier
when the cutoff frequency � of the highpass filter is increased. As shown in Fig. 13b,
the kurtosis �.�/ monotonically increases with �, as for the focusing regime. Let us
recall that a kurtosis � equal to 3 corresponds to a random field having a gaussian
statistics. The fact that the initial value of the kurtosis �.� D 0/ is lower (resp.
greater) than 3 in defocusing (resp. focusing) regime complies with the fact that the
unfiltered field exhibit low-tailed (resp. heavy-tailed) deviations from Gaussianity
at t� D 20. Note that the growth of the kurtosis �.�/ is greater in focusing regime
than in defocusing regime, see Fig. 13.

5 Conclusion

The work presented in this chapter deals with the general question of statistical
changes experienced by ensembles of nonlinear random waves propagating in
systems ruled by integrable equations. It enters within the framework of “integrable
turbulence” which is a new field of research introduced by Zakharov to address
specifically this question that “composes a new chapter of the theory of turbulence”
[33]. In our work, we have specifically focused on optical fiber systems accurately
described by the integrable one-dimensional nonlinear Schrödinger equation. We
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have considered random complex fields having a gaussian statistics and an infinite
extension at initial stage. Numerical simulations with periodic boundary conditions
and optical fiber experiments have been used to investigate spectral and statistical
changes experienced by nonlinear waves both in focusing and in defocusing
propagation regimes.

As a result of propagation in the strongly nonlinear regime, the power spectrum
of the random waves is found to broaden while taking exponential wings both
in focusing and in defocusing regimes, see Sects. 2.2 and 2.3. In the nonlinear
regime, this spectral broadening phenomenon is a signature of a process in which the
typical spatial scale of the random fluctuations decreases to reach the healing length
of the wave system at long evolution time. Numerical simulations have revealed
that heavy-tailed deviations from gaussian statistics occur in the focusing regime
while low-tailed deviations from gaussian statistics are found in the defocusing
regime. These statistical behaviors have been observed in optical fiber experiments
relying on the implementation of an original and fast detection scheme, see Sect. 3.
Numerical simulations made at long evolution times have also shown that the
wave system exhibits a statistically stationary state in which neither the PDF of
the wave field nor the spectrum change with the evolution variable. Separating
fluctuations of small scale from fluctuations of large scale, we have finally revealed
the phenomenon of intermittency; i.e., small scales are characterized by large
heavy-tailed deviations from Gaussian statistics, while the large ones are almost
Gaussian. This intermittency phenomenon has been observed both in focusing and
in defocusing propagation regimes, see Sect. 4.

As underlined in Sect. 1, the determination of the PDF of a random wave field
represents an issue of importance in the field of integrable turbulence. Given a
nonlinear partial differential integrable equation together with some given initial
and boundary conditions, there is no systematic theory that allows one to determine
the PDF of the wave field at asymptotic stage (i.e. long evolution time).

The wave turbulence (WT) theory describes out-of-equilibrium statistical
mechanics of random nonlinear waves in the weakly nonlinear regime[1, 12]. Taking
into account non resonant terms, WT treatment has been shown to properly describe
the evolution of the kurtosis of the wave field together with spectral changes that
occur in the weakly nonlinear regime [15, 38, 43]. The general theory of integrable
turbulence (in particular in the strongly nonlinear regime) is however still an open
fundamental question.

Our experiments and numerical simulations made with non-decaying and non-
localized random waves open new questions about statistical properties of inco-
herent waves in integrable turbulence. First, the statistical properties characterizing
the asymptotic stage of integrable turbulence are of fundamentally different natures
for waves fluctuating around a constant background and for decaying waves.
With continuous random waves having an infinite spatial extension, the nonlinear
evolution of the random wave can no longer produce individualized solitons at
long time. On the other hand, solitons never separate from each other and they
always interact. Moreover solitons on finite background can emerge from nonlinear
interaction in the focusing regime. In the defocusing case, the fact that the random
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field does not decay at infinity means that dark solitons can be sustained and interact
at any time (any value of z in our fiber experiments).

In our work, the relevant boundary conditions are periodic boundary conditions
in a box of size L. Random waves of infinite spatial extension such as the
ones considered in experiments reported in Sect. 3 can be described by taking
the limit of a box of infinite spatial extension (L ! 1). Rigorously speaking,
the theoretical framework for dealing with integrable wave systems and periodic
boundary conditions is finite gap theory [92]. So far, no theoretical work has been
made in this framework to determine statistical properties of ensembles of nonlinear
random waves. However some recent results point out the possibility to use the
inverse scattering transform for the focusing nonlinear Schrödinger equation with
nonzero boundary conditions [52, 65, 93].

The gaussian statistics of the initial condition is a key point of our experimental
work. In the focusing regime of the 1D-NLSE, the statistics of the field measured
in the statistically stationary state strongly depends on the nature of the initial
condition. In our experiments and numerical simulations made with a complex field
having initially a gaussian statistics, heavy-tailed deviations from Gaussianity have
been observed in the statistically stationary state (i.e. at long time), as discussed in
Sect. 2.2 and in Sect. 3. If the initial condition is now made from a plane wave (or a
condensate) with an additional noise, the nonlinear stage of modulational instability
is characterized by a stationary statistics following the normal law [36]. The fact that
there exists such a strong qualitative difference between statistics measured in the
stationary state while starting from different noisy initial condition is an intriguing
issue.

Several fundamental questions are now opened in the field of integrable tur-
bulence. First of all, the different scenarios leading to the emergence of coherent
structures from the propagation of random waves in systems described by 1D-
NLSE are not clearly identified and classified. Even the precise identification of
the coherent structures themselves is a complex outstanding.

Roughly speaking, the problem of the evolution of a plane wave with small
perturbation is often associated with the modulational instability and the emergence
of the solitons on finite background (Akhmediev breathers, Peregrine solitons. . . )
[20]. On the other hand, a large initial pulse with zero boundary conditions is
known to evolve with complex dynamical features such as dispersive shock waves
in the defocusing regime [66, 69, 94] or N-solitons structures in the focusing regime
[54, 60]. In integrable turbulence, the stochasticity of the initial conditions together
with the non-zero boundary conditions leads to an extremely nontrivial new class of
problems.

In the focusing regime, the breather solutions with non-zero background of
the 1D-NLSE such as Akhmediev breathers or the Peregrine solitons are often
considered as prototypes of rogue waves [24, 61]. These coherent structures
have been generated in optical fiber experiments [20, 21] and in hydrodynamical
experiments [18]. The interaction of solitons [95] and the collision of breathers have
been studied theoretically and experimentally [22]. These nice and important studies
need now to be extended in the context of random nonlinear waves. In particular, one
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of the open questions is the understanding of the emergence of coherent structures
from the two different types of initial conditions, the plane wave with small noise
on one hand and the random wave computed from the RP model on the other hand.

A very recent work [65] investigates the influence of the strength of the noise
added to an initial plane wave. Many open questions arise from this fundamental
problem. In particular, the emergence of solitons or breathers on finite background
in both cases (initial conditions made of a condensate or initial conditions made of
partially coherent waves with Gaussian statistics) is a complex and wide question.

In the strongly nonlinear regime (i.e. when HNL >> HL in the initial stage),
high-amplitude structures first emerge on the top of the initial fluctuations. If one
fluctuation is isolated, the complex “breather-like” dynamics might resemble the
one of the N-solitons solutions of 1D-NLSE with zero boundary conditions [54,
60]. A striking result of [82] is that the evolution of a single hump in the semi-
classical (small-dispersion) regime generically leads to the emergence of a Peregrine
breather. Our numerical simulations [37] and recent experimental [81] results seem
to confirm this universal behavior in the context of random waves. The mathematical
theory of the dispersive regularization of gradient catastrophes is probably of crucial
importance for the understanding of the mechanisms leading to the emergence of
coherent structures in the weak dispersion limit (when HNL >> HL in the initial
stage) [82, 96, 97]. Numerical computations of IST spectra will probably be helpful
in the classification of the structures emerging in integrable turbulence [52].

Up to now, there is no complete theory that describes the statistical properties of
integrable turbulence [32, 34, 36, 37, 65, 81]. To conclude, a major open question
in integrable turbulence is to understand the link between the local dynamics (the
coherent structures) and the statistical properties of the nonlinear random waves.
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Whitham Modulation Equations
and Application to Small Dispersion
Asymptotics and Long Time Asymptotics
of Nonlinear Dispersive Equations

Tamara Grava

Abstract In this chapter we review the theory of modulation equations or Whitham
equations for the travelling wave solution of KdV. We then apply the Whitham
modulation equations to describe the long-time asymptotics and small dispersion
asymptotics of the KdV solution.

1 Introduction

The theory of modulation refers to the idea of slowly changing the constant
parameters in a solution to a given PDE. Let us consider for example the linear
PDE in one spatial dimension

ut C �2uxxx D 0; (1)

where � is a small positive parameter. Such equation admits the exact travelling
wave solution

u.x; t/ D a cos
�
k
x

�
C !

t

�

�
; ! D k3

where a and k are constants. Here
x

�
and

t

�
are considered as fast variables since

0 < � � 1. The general solution of Eq. (1) restricted for simplicity to even initial
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data f .x/ is given by

u.x; tI �/ D
Z 1

0

F.kI �/ cos
�
k
x

�
C !

t

�

�
dk

where the function F.kI �/ depends on the initial conditions by the inverse Fourier

transform F.kI �/ D 1

��

R1
�1 f .x/e�ik x

� dx.

For fixed �, the large time asymptotics of u.x; tI �/ can be obtained using the
method of stationary phase

u.x; tI �/ ' F.kI �/
s

2�

tj!00.k/j cos
�
k
x

�
C !

t

�
� �

4
sign!00.k/

�
; (2)

where now k D k.x; t/ solves

x C !0.k/t D 0: (3)

We will now obtain a formula compatible with (2) using the modulation theory. Let
us assume that the amplitude a and the wave number k are slowly varying functions
of space and time:

a D a.x; t/; k D k.x; t/:

Plugging the expression

u.x; tI �/ D a.x; t/ cos
�
k.x; t/

x

�
C !.x; t/

t

�

�
;

into Eq. (1) one obtains from the terms of order one the equations

kt D !0.k/kx; at D !0.k/ax C 1

2
a!00.k/kx; (4)

which describe the modulation of the wave parameters a and k. The curve
dx

dt
D

�!0.k/ is a characteristic for both the above equations. On such curve

dk

dt
D 0;

da

dt
D 1

2
a!00.k/kx:

We look for a self-similar solution of the above equation in the form k D k.z/ with
z D x=t. The first equation in (4) gives

.z C !0.k//kz D 0
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which has the solutions kz D 0 or z C !0.k/ D 0. This second solution is equivalent
to (3). Plugging this solution into the equation for the amplitude a one gets

da

dt
D � a

2t
; or a.x; t/ D a0.k/p

t
;

for an arbitrary function a0.k/. Such expression gives an amplitude a.x; t/ compati-
ble with the stationary phase asymptotic (2).

2 Modulation of Nonlinear Equation

Now let us consider a similar problem for a nonlinear equation, by adding a
nonlinear term 6uux to Eq. (1)

ut C 6uux C �2uxxx D 0: (5)

Such equation is called Korteweg de Vries (KdV) equation, and it describes the
behaviour of long waves in shallow water. The coefficient 6 is front of the nonlinear
term, is just put for convenience. The KdV equation admits the travelling wave
solution

u.x; tI �/ D �.�/; � D 1

�
.kx � !t C �0/;

where we assumed that � is a 2�-periodic function of its argument and �0 is an
arbitrary constant. Plugging the above ansatz into the KdV equation one obtains
after a double integration

k2

2
�2� D ��3 C V�2 C B�C A; V D !

2k
; (6)

where A and B are integration constants and V is the wave velocity. In order to
get a periodic solution, we assume that the polynomial ��3 C V�2 C B� C A D
�.� � e1/.� � e2/.� � e3/ with e1 > e2 > e3. Then the periodic motion takes place
for e2 � � � e1 and one has the relation

k
d�p

2.e1 � �/.� � e2/.� � e3/
D d�; (7)

so that integrating over a period, one obtains

2k
Z e1

e2

d�p
2.e1 � �/.� � e2/.�� e3/

D
I

d� D 2�:
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It follows that the wavenumber k D 2�

L
is expressed by a complete integral of the

first kind:

k D �

p
.e1 � e3/p
2K.m/

; m D e1 � e2
e1 � e3

; K.m/ WD
Z �

2

0

d p
1 � m2 sin2  

; (8)

and the frequency

! D 2k.e1 C e2 C e3/ ; (9)

is obtained by comparison with the polynomial in the r.h.s. of (6). Performing an
integral between e1 and � in Eq. (7) one arrives to the equation

Z  

0

d 0p
1 � s2 sin2  0 D ��

p
e1 � e3p
2k

C K.m/; cos D
p
� � e1p
e2 � e1

:

Introducing the Jacobi elliptic function cn

�
��

p
e1 � e3p
2k

C K.m/Im
�

D cos and

using the above equations we obtain

u.x; tI �/ D �.�/ D e2 C .e1 � e2/cn2
�p

e1 � e3p
2�

�
x � !

k
t C �0

k

�
� K.m/Im

�
;

(10)

where we use also the evenness of the function cn.zIm/.
The function cn2.zIm/ is periodic with period 2K.m/ and has its maximum at

z D 0 where cn.0Im/ D 1 and its minimum at z D K.m/ where cn.K.m/Im/ D 0.
Therefore from (10), the maximum value of the function u.x; tI �/ is umax D e1 and
the minimum value is umin D e2.

2.1 Whitham Modulation Equations

Now, as we did it in the linear case, let us suppose that the integration constants A,
B and V depend weekly on time and space

A D A.x; t/; B D B.x; t/; V D V.x; t/:

It follows that the wave number and the frequency depends weakly on time and
space too. We are going to derive the equations of A D A.x; t/, B D B.x; t/ and
V D V.x; t/ in such a way that (10) is an approximate solution of the KdV equation
(5) up to sub-leading corrections. We are going to apply the nonlinear analogue of
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the WKB theory introduced in [17]. For the purpose let us assume that

u D u.�.x; t/; x; t/; � D �

�
(11)

Pluggin the ansatz (11) into the KdV equation one has

u�
�t

�
C ut C 6u.u�

�x

�
C ux/C �3x

�
u��� C 3�2x u��x C 3�x�u�xx C 3�xx�u�x

C3�xx�xu�� C �xxx�u� C �2uxxx D 0: (12)

Next assuming that u has an expansion in power of �, namely u D u0C�u1C�2u2C
: : : one obtain from (12) at order 1=�

�tu0;� C 6�xu0u0;� C �3x u0;��� D 0:

The above equation gives the cnoidal wave solution (10) if u0.�/ D �.�/ and

�t D �!; �x D k; (13)

where k and ! are the frequency and wave number of the cnoidal wave as defined
in (8) and (9) respectively. Compatibility of Eq. (13) gives

kt C !x D 0; (14)

which is the first equation we are looking for. To obtain the other equations let us
introduce the linear operator

L WD !
@

@�
� 6k

@

@�
u0 � k3

@3

@�3
;

with formal adjoint L 
 D !
@

@�
�6ku0 @

@�
�k3

@3

@�3
: Then at order �0 Eq. (12) gives

L u1 DR.u0/; R.u0/ WD u0;t C 6u0u0;x C 3�2x u0;��x C 3�xx�xu0;��:

In a similar way it is possible to get the equations for the higher order correction
terms. A condition of solvability of the above equation can be obtained by observing
that the integral over a period of the l.h.s of the above equation against the constant
function and the function u0 is equal to zero because 1 and u0 are in the kernel of
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L 
. Therefore it follows that

0 D
Z 2�

0

R.u0/d� D @t

Z 2�

0

u0d� C 3@x

Z 2�

0

u20d�

and

0 D
Z 2�

0

u0R.u0/d� D @t

Z 2�

0

1

2
u20d� C 2@x

Z 2�

0

u30d�

C3
Z 2�

0

u0.�
2
x u0;��x C �xx�xu0;��/d�:

By denoting with the bracket h : i the average over a period, we rewrite the above
two equations, after elementary algebra and an integration by parts, in the form

@thu0i C 3@xhu20i D 0 (15)

@thu20i C 4@xhu30i � 3@xh�2x u20;�i D 0: (16)

Using the identities

hu0u0;�� C u20;�i D 0; hu0;��i D 0;

and (6), we obtained the identities for the elliptic integrals

Z e2

e1

5�3 � 4V�2 � 3B�� 2Ap��3 C V�2 C B�C A
d� D 0;

Z e2

e1

�3�2 C 2V�C Bp��3 C V�2 C B�C A
d� D 0:

Introducing the integral W WD
p
2
�

R e2
e1

p��3 C V�2 C B�C Ad� and using the
above two identities and the relations k D WA, hu0i D 2�kWB and hu20i D 2�kWV

where WA, WB and WV are the partial derivatives of W with respect to A, B and V
respectively, we can reduce (14), (15) and (16) to the form

@

@t
WA C 2V

@

@x
WA � 2WA

@

@x
V D 0 (17)

@

@t
WB C 2V

@

@x
WB C WA

@

@x
B D 0 (18)

@

@t
WV C 2V

@

@x
WV � 2WA

@

@x
A D 0: (19)

Equations (17), (18) and (19) are the Whitham modulation equations for the
parameters A, B and V . The same equations can also be derived according to
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Whitham’s original ideas of averaging method applied to conservation laws, to
Lagrangian or to Hamiltonians [57]. Using e1, e2 and e3 as independent variables,
instead of their symmetric function A, B and V , Whitham reduced the above three
equations to the form

@

@t
ej C

3X
kD1


k
j

@

@x
ek D 0; j D 1; 2; 3; (20)

for the matrix 
k
j given by


 D 2V � WA

0
@@e1WA @e2WA @e3WA

@e1WB @e2WB @e3WB

@e1WV @e2WB @e3WV

1
A

�10
@ 2 2 2

e2 C e3 e1 C e3 e1 C e2
2e2e3 2e1e3 2e1e2

1
A ;

where @eiWA is the partial derivative with respect to ei and the same notation holds
for the other quantities. Equations (20) is a system of quasi-linear equations for
ej D ej.x; t/, j D 1; 2; 3. Generically, a quasi-linear 3 � 3 system cannot be reduced
to a diagonal form. However Whitham, analyzing the form of the matrix 
 , was
able to get the Riemann invariants that reduce the system to diagonal form. Indeed
making the change of coordinates

ˇ1 D e2 C e1
2

; ˇ2 D e1 C e3
2

; ˇ3 D e2 C e3
2

; (21)

with

ˇ3 < ˇ2 < ˇ1;

the Whitham modulation equations (20) are diagonal and take the form

@

@t
ˇi C 	i

@

@x
ˇi D 0; i D 1; 2; 3; (22)

where the characteristics speeds 	i D 	i.ˇ1; ˇ2; ˇ3/ are

	i D 2.ˇ1 C ˇ2 C ˇ3/C 4

Q
i¤k.ˇi � ˇk/

ˇi C ˛
; (23)

˛ D �ˇ1 C .ˇ1 � ˇ3/E.m/
K.m/

; m D ˇ2 � ˇ3
ˇ1 � ˇ3 ; (24)
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whereE.m/ D R �=2
0

p
1 � m sin 2d is the complete elliptic integral of the second

kind. Another compact form of the Whitham modulations equations (22) is

@k

@̌ i

@̌ i

@t
C @!

@̌ i

@̌ i

@x
D 0; i D 1; 2; 3; (25)

where the above equations do not contain the sum over repeated indices. Observe
that the above expression can be derived from the conservation of waves (14) by
assuming that the Riemann invariants ˇ1 > ˇ2 > ˇ3 vary independently. Such
form (25) is quite general and easily adapts to other modulation equations ( see for
example the book [34]). The equations (25) gives another expression for the speed

	i D 2.ˇ1 C ˇ2 C ˇ3/C 2
k

@ˇi k
which was obtained in [30].

The Whitham equations are a systems of 3� 3 quasi-linear hyperbolic equations
namely for ˇ1 > ˇ2 > ˇ3 one has [42]

	1 > 	2 > 	3:

Using the expansion of the elliptic integrals as m ! 0 (see e.g. [40])

K.m/ D �

2

�
1C m

4
C 9

64
m2 C O.m3/

�
; E.m/ D �

2

�
1 � m

4
� 3

64
m2 C O.m3/

�
;

(26)

and m ! 1

E.m/ ' 1C 1

2
.1 � p

m/

�
log

16

1 � m
� 1

�
; K.m/ ' 1

2
log

16

1 � m
; (27)

one can verify that the speeds 	i have the following limiting behaviour respec-
tively

• at ˇ2 D ˇ1

	1.ˇ1; ˇ1; ˇ3/ D 	2.ˇ1; ˇ1; ˇ3/ D 4ˇ1 C 2ˇ3

	3.ˇ1; ˇ1; ˇ3/ D 6ˇ3I
(28)

• at ˇ2 D ˇ3 one has

	1.ˇ1; ˇ3; ˇ3/ D 6ˇ1

	2.ˇ1; ˇ3; ˇ3/ D 	3.ˇ1; ˇ3; ˇ3/ D 12ˇ3 � 6ˇ1:
(29)
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Namely, when ˇ1 D ˇ2, the equation for ˇ3 reduces to the Hopf equation
@

@t
ˇ3 C

6ˇ3
@

@x
ˇ3 D 0. In the same way when ˇ2 D ˇ3 the equation for ˇ1 reduces to the

Hopf equation.
In the coordinates ˇi, i D 1; 2; 3 the travelling wave solution (10) takes the form

u.x; tI �/ D ˇ1 C ˇ3 � ˇ2 C 2.ˇ2 � ˇ3/cn2
�
K.m/

˝

��
C K.m/Im

�
; (30)

where

˝ WD kx � !t C �0 D �

p
ˇ1 � ˇ3

K.m/
.x � 2t.ˇ1 C ˇ2 C ˇ3//C �0; m D ˇ2 � ˇ3

ˇ1 � ˇ3 :

(31)

We recall that

k D �

p
ˇ1 � ˇ3

K.m/
; ! D 2k.ˇ1 C ˇ2 C ˇ3/; (32)

are the wave-number and frequency of the oscillations respectively.
In the formal limit ˇ1 ! ˇ2, the above cnoidal wave reduce to the soliton

solution since cn.z;m/
m!1! sech.z/, while the limit ˇ2 ! ˇ3 is the small amplitude

limit where the oscillations become linear and cn.z;m/
m!0! cos.z/. Using identities

among elliptic functions [40] we can rewrite the travelling wave solution (30) using
theta-functions

u.x; t; �/ D ˇ1 C ˇ2 C ˇ3 C 2˛ C 2�2
@2

@x2
log#

�
˝.x; t/

2��
I �
�
; (33)

with ˛ as in (24) and where for any z 2 C the function #.zI �/ is defined by the
Fourier series

#.zI �/ D
X
n2Z

e� in
2�C2� inz; � D i

K0.m/
K.m/

: (34)

Formula (33) comes out when dealing with the theory of finite-gap integration of
the KdV equation and it is a particular case of the Its-Matveev formula [33] that
describes the quasi-periodic solutions of the KdV equation through higher order
�-functions.
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Remark 2.1 We remark that for fixed ˇ1; ˇ2 and ˇ3, formulas (30) or (33) give an
exact solution of the KdV equation (5), while when ˇj D ˇj.x; t/ evolves according
to the Whitham equations, such formulas give an approximate solution of the KdV
equation (5). We also remark that in the derivation of the Whitham equations, we did
not get any information for an eventual modulation of the arbitrary phase �0. The
modulation of the phase requires a higher order analysis, that won’t be explained
here. However we will give below a formula for the phase.

Remark 2.2 The Riemann invariants ˇ1, ˇ2 and ˇ3 have an important spectral
meaning. Let us consider the spectrum of the Schrödinger equation

�2
d2

dx2
� C u� D �	�;

where u.x; tI �/ is a solution of the KdV equation. The main discovery of Gardener,
Green Kruskal and Miura [23] is that the spectrum of the Schrödinger operator is
constant in time if u.x; tI �/ evolve according to the KdV equation. This important
observation is the starting point of inverse scattering and the modern theory of
integrable systems in infinite dimensions.

If u.x; tI �/ is the travelling wave solution (33), where ˇ1 > ˇ2 > ˇ3 are
constants, then the Schrödinger equation coincides with the Lamé equation and
its spectrum coincides with the Riemann invariants ˇ1 > ˇ2 > ˇ3. The stability
zones of the spectrum are the bands .�1; ˇ3�[Œˇ2; ˇ1�. The corresponding solution
�.x; tI	/ of the Schrödinger equation is quasi-periodic in x and t with monodromy

�.x C �L; tI	/ D eip.	/L�.x; tI	/

and

�.x; t C �TI	/ D eiq.	/T�.x; tI	/;

where �L and �T are the wave-length and the period of the oscillations. The
functions p.	/ and q.	/ are called quasi-momentum and quasi-energy and for the
cnoidal wave solution they take the simple form

p.	/ D
Z 	

ˇ2

dp.	0/; q.	/ D
Z 	

ˇ2

dq.	0/;

where dp and dq are given by the expression

dp.	/ D .	C ˛/d	

2
p
.�1 � 	/.	� �2/.	 � �3/

; dq.	/ D 12
.	2 � 1

2 .�1 C �2 C �3/	C �/d	

2
p
.�1 � 	/.	� �2/.	� �3/
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with the constant ˛ defined in (24) and � D ˛

6
.�1C�2C�3/C 1

3
.�1�2C�1�3C�2�3/

Note that the constants ˛ and � are chosen so that

Z ˇ2

ˇ3

dp D 0;

Z ˇ2

ˇ3

dq D 0:

The square root
p
.ˇ1 � 	/.	 � ˇ2/.	 � ˇ3/ is analytic in the complex place

Cnf.�1; ˇ3�[ Œˇ2; ˇ1�g and real for large negative 	 so that p.	/ and q.	/ are real
in the stability zones. The Whitham modulation equations (22) are equivalent to

@

@t
dp.	/C @

@x
dq.	/ D 0; (35)

for any 	. Indeed by multiplying the above equation by .	 � ˇi/
3
2 and taking the

limit 	 ! ˇi, one gets (22). Furthermore

k D
Z ˇ1

ˇ2

dp; ! D
Z ˇ1

ˇ2

dq;

with k and ! the wave-number and frequency as in (32), so that integrating (35)
between ˇ1 and ˇ2 and observing that the integral does not depend on the path of
integration one recovers the equation of wave conservation (14).

3 Application of Whitham Modulation Equations

As in the linear case, the modulation equations have important applications in the
description of the solution of the Cauchy problem of the KdV equation in asymptotic
limits. Let us consider the initial value problem



ut C 6uux C �2uxxx D 0

u.x; 0I �/ D f .x/;
(36)

where f .x/ is an initial data independent from �. When we study the solution of such
initial value problem u.x; tI �/ one can consider two limits:

• the long time behaviour, namely

u.x; tI �/ t!1! ‹; � fixedI

• the small dispersion limit, namely

u.x; tI �/ �!0! ‹; x and t in compact sets.
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These two limits have been widely studied in the literature. The physicists Gurevich
and Pitaevski [28] were among the first to address these limits and gave an heuristic
solution imitating the linear case. Let us first consider one of the case studied by
Gurevich and Pitaevski, namely a decreasing step initial data

f .x/ D


c for x < 0; c > 0;
0 for x > 0:

(37)

Using the Galileian invariance of KdV equation, namely x ! x C 6Ct, t ! t and
u ! u C C, every initial data with a single step can be reduced to the above form.
The above step initial data is invariant under the rescaling x=� ! x and t=� !,
therefore, in this particular case it is completely equivalent to study the small �
asymptotic, or the long time asymptotics of the solution.

Such initial data is called compressive step, and the solution of the Hopf equation
vtC6vvx D 0 (� D 0 in (36) ) develop a shock for t > 0. The shock front s.t/moves
with velocity 3ct while the multi-valued piece-wise continuos solution of the Hopf
equation vt C 6vvx D 0 for the same initial data is given by

v.x; t/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

c for x < 6tc;

x

6t
for 0 � x � 6tc;

0 for x � 0:

For t > 0 the solution u.x; tI �/ of the KdV equation develops a train of
oscillations near the discontinuity. These oscillations are approximately described
by the travelling wave solution (33) of the KdV equation where ˇi D ˇi.x; t/,
i D 1; 2; 3, evolve according to the Whitham equations. However one needs to
fix the solution of the Whitham equations. Given the self-similar structure of the
solution of the Hopf equation, it is natural to look for a self-similar solution of the

Whitham equation in the form ˇi D ˇi.z/ with z D x

t
. Applying this change of

variables to the Whitham equations one obtains

.	i � z/
@̌ i

@z
D 0; i D 1; 2; 3; (38)

whose solution is 	i D z or @zˇi D 0. A natural request that follows from the
relations (28) and (29) is that at the right boundary of the oscillatory zone zC, when
ˇ1.zC/ D ˇ2.zC/, the function ˇ3 has to match the Hopf solution that is constant
and equal to zero, namely ˇ3.zC/ D 0. Similarly, at the left boundary z� when
ˇ2.z�/ D ˇ3.z�/, the function ˇ1.z�/ D c so that it matches the Hopf solution.
From these observations it follows that the solution of (38) for z� � z � zC is
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given by

ˇ1.z/ D c; ˇ3.z/ D 0; z D 	2.c; ˇ2; 0/: (39)

In order to determine the values z˙ it is sufficient to let ˇ2 ! c and ˇ2 ! 0

respectively in the last equation in (39). Using the relations (28) and (29) one has
	2.c; c; 0/ D 4c and 	2.c; 0; 0/ D �6c so that

z� D �6c; or x�.t/ D �6ct and zC D 4c; or xC.t/ D 4ct:

According to Gurevich and Pitaevski for �6ct < x < 4t and t � 1, the asymptotic
solution of the Korteweg de Vries equation with step initial data (37) is given by the
modulated travelling wave solution (30), namely

u.x; tI �/ ' c � ˇ2 C 2ˇ2 cn2
�p

c

�
.x � 2t.c C ˇ2//C K.m/

��
�0 C K.m/Im

�
;

(40)
with

m D ˇ2.x; t/

c
;

where ˇ2.x; t/ is given by (39). The phase �0 in (40) has not been described by
Gurevich and Pitaevski. Finally in the remaining regions of the .x; t > 0/ one has

u.x; t; �/ '


c for x < �6ct;
0 for x > 4ct:

This heuristic description has been later proved in a rigorous mathematical way (see
the next section). We remark that at the right boundary xC.t/ of the oscillatory zone,
when ˇ2 ! c, ˇ1 ! c and ˇ3 ! 0, the cnoidal wave (40) tends to a soliton,
cn.zIm/ ! sechz as m ! 1.

After some computations, the limit of the elliptic solution (40) gives

u.x; t; �/ ' 2c sech2
"
x � xC.t/

�

p
c C 1

2
log

�
16c

c � ˇ2

�
C

Q�0
�

#
; (41)

where the logarithmic term is due to the expansion of the complete elliptic integral
K.m/ as in (27) and c � ˇ2 D O.�/. The determination of the limiting value of the
phase Q�0 requires a deeper analysis [9]. The important feature of the above formula
is that if the argument of the sech term is approximately zero near the point xC.t/,
then the height of the rightmost oscillation is twice the initial step c. This occurs for
a single step initial data (see Fig. 1) while for step-like initial data as in Fig. 2 this
less evident.
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Fig. 1 In black the initial data (a smooth step) and in blue KdV solution at time t D 12 and � D 1.
One can clearly see the height of the rightmost oscillation (approximately a soliton) is about two
times the height of the initial step
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Fig. 2 On top the step-like initial data and on bottom the solution at time t D 12. One can clearly
see the soliton region containing two solitons and the collision-less shock region where modulated
oscillations are formed

The Gurevich Pitaevsky problem has been studied also for perturbations of the
KdV equation with forcing, dissipative or conservative non integrable terms [21,
34, 35] and applied to the evolution of solitary waves and undular bores in shallow-
water flows over a gradual slope with bottom friction [22].
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3.1 Long Time Asymptotics

The study of the long time asymptotic of the KdV solution was initiated around
1973 with the work of Gurevich and Pitaevski [28] for step-initial data and Ablowitz
and Newell [2] for rapidly decreasing initial data. By that time it was clear that
for rapidly decreasing initial data the solution of the KdV equation splits into a
number of solitons moving to the right and a decaying radiation moving to the
left. The first numerical evidence of such behaviour was found by Zabusky and
Kruskal [39]. The first mathematical results were given by Ablowitz and Newell
[2] and Tanaka [48] for rapidly decreasing initial data. Precise asymptotics on the
radiation part were first obtained by Zakharov and Manakov [58], Ablowitz and
Segur [3] and Buslaev and Sukhanov [7], Venakides [54]. Rigorous mathematical
results were also obtained by Deift and Zhou [12], inspired by earlier work by Its
[32]; see also the review [14] and the book [46] for the history of the problem.
In [3, 29] the region with modulated oscillations of order O(1) emerging in the
long time asymptotics was called collisionless shock region. In the physics and
applied mathematics literature such oscillations are also called dispersive shock
waves, dissipationless shock wave or undular bore. The phase of the oscillations
was obtained in [15]. Soon after the Gurevich and Pitaevski’s paper, Khruslov [37]
studied the long time asymptotic of KdV via inverse scattering for step-like initial
data. In more recent works, using the techniques introduced in [12], the long time
asymptotic of KdV solution has been obtained for step like initial data improving
some error estimates obtained earlier and with the determination of the phase �0
of the oscillations [20], see also [1]. Long time asymptotic of KdV with different
boundary conditions at infinity has been considered in [5]. The long time asymptotic
of the expansive step has been considered in [43].

Here we report from [20] about the long time asymptotics of KdV with step like
initial data f .x/, namely initial data converging rapidly to the limits



f .x/ ! 0 for x ! C1
f .x/ ! c > 0 for x ! �1;

(42)

but in the finite region of the x plane any kind of regular behaviour is allowed. The
initial data has to satisfy the extra technical assumption of being sufficiently smooth.
Then the asymptotic behaviour of u.x; tI �/ for fixed � and t ! 1 has been obtained
applying the Deift-Zhou method in [12] see Fig. 2:

• in the region x=t > 4c C ı, for some ı > 0, the solution is asymptotically given
by the sum of solitons if the initial data contains solitons otherwise the solution
is approximated by zero at leading order;

• in the region �6cCı1 < x=t < 4c� ı2, for some ı1; ı2 > 0, (collision-less shock
region) the solution u.x; tI �/ is given by the modulated travelling wave (40), or
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using #-function by (33), namely

u.x; tI �/ D ˇ2.x; t/�cC2c E.m/
K.m/

C 2k2

.2�/2

�
log#

�
kx � !t C �0

2��
I �
��00

Co.1/

(43)
where

k D �

p
c

K.m/
; ! D 2k.c C ˇ2/; m D ˇ2.x; t/

c

with ˇ2 D ˇ2.x; t/ determined by (39). In the above formula the prime in the
log# means derivative with respect to the argument, namely .log#.z0I �//00 D
d2

dz2
log#.z C z0I �//jzD0. The phase �0 is

�0 D k

�

Z c

ˇ2

log j NT.ipz/T1.i
p
z/jdzp

z.c � z/.z � ˇ2/
; (44)

where T and T1 are the transmission coefficients of the Schrödinger equation

�2
d2

dx2
� C f .x/� D �	� from the right and left respectively.

The remarkable feature of formula (43) is that the description of the collision-
less shock region for step-like initial data coincides with the formula obtained by
Gurevich and Pitaevsky for the single step initial data (37) up to a phase factor.
Indeed the initial data is entering explicitly through the transmission coefficients
only in the phase �0 of the oscillations.

• In the region x=t < �6t � ı3, for some constant ı3 > 0, the solution is
asymptotically close to the background c up to a decaying linear oscillatory term.

We remark that the higher order correction terms of the KdV solution in the large
time asymptotics can be found in [3, 7, 20, 58]. For example in the region x < �6tc
the solution is asymptotically close to the background c up to a decaying linear
oscillatory term. We also remark that the boundaries of the above three regions of the
.x; t/ plane have escape our description. In such regions the asymptotic description
of the KdV solution is given by elementary functions or Painlevé trascendents see
[47] or the more recent work [6].

The technique introduced by Deift-Zhou [12] to study asymptotics for integrable
equations has proved to be very powerful and effective to study asymptotic
behaviour of many other integrable equations like for example the semiclassical
limit of the focusing nonlinear Schrödinger equation [36], the long time asymptotics
of the Camassa-Holm equation [6] or the long time asymptotic of the perturbed
defocusing nonlinear Schrödinger equation [13].
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3.2 Small � Asymptotic

The idea of the formation of an oscillatory structure in the limit of small dispersion
of a dispersive equation belongs to Sagdeev [45]. Gurevish and Pitaevskii in 1973
called the oscillations, arising in the small dispersion limit of KdV, dispersive shock
waves in analogy with the shock waves appearing in the zero dissipation limit of the
Burgers equation. A very recent experiment in a water tank has been set up where
the dispersive shock waves have been reproduced [52].

The main steps for the description of the dispersive shock waves are the
following:

• as long as the solution of the Cauchy problem for Hopf equation vt C 6vvx D 0

with the initial data v.x; 0/ D f .x/ exists, then the solution of the KdV equation
u.x; tI �/ D v.x; t/ C O.�2/. Generically the solution of the Hopf equation
obtained by the method of characteristics

v.x; t/ D f .�/; x D f .�/t C �; (45)

develops a singularity when the function � D �.x; t/ given implicitly by the
map x D f .�/t C � is not uniquely defined. This happens at the first time when
f 0.�/t C 1 D 0 and f 00.�/ D 0 (see Fig. 3). These two equations and (45) fix
uniquely the point .xc; tc/ and uc D v.xc; tc/. At this point, the gradient blow up:
vx.x; t/jxc;tc ! 1.

• The solution of the KdV equations remains smooth for all positive times. Around
the time when the solution of the Hopf equation develops its first singularity at
time tc, the KdV solution, in order to compensate the formation of the strong
gradient, starts to oscillate, see Fig. 3. For t > tc the solution of the KdV equation
u.x; tI �/ is described as � ! 0 as follows:

– there is a cusp shape region of the .x; t/ plane defined by x�.t/ < x < xC.t/
with x�.tc/ D xC.tc/ D xc. Strictly inside the cusp, the solution u.x; tI �/ has
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Fig. 3 In blue the solution of the KdV equation for the initial data f .x/ D �sech2.x/ at the time
t D 0:55 for � D 10�1. In black the (multivalued) solution of the Hopf equation for the same
initial data and for several times: t D 0, t D tc D 0:128, t D 0:35 and t D 0:55
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an oscillatory behaviour which is asymptotically described by the travelling
wave solution (33) where the parameters ˇj D ˇj.x; t/, j D 1; 2; 3, evolve
according to the Whitham modulation equations.

– Strictly outside the cusp-shape region the KdV solution is still approximated
by the solution of the Hopf equation, namely u.x; tI �/ D v.x; t/C O.�2/.

Later the mathematicians Lax-Levermore [41] and Venakides [55, 56] gave a
rigorous mathematical derivation of the small dispersion limit of the KdV equation
by solving the corresponding Cauchy problem via inverse scattering and doing the
small � asymptotic. Then Deift, Venakides and Zhou [16] obtained an explicit
derivation of the phase �0. The error term O.�2/ of the expansion outside the
oscillatory zone was calculated in [11]. For analytic initial data, the small �
asymptotic of the solution u.x; tI �/ of the KdV equation is given for some times
t > tc and within a cusp x�.t/ < x < xC.t/ in the .x; t/ plane by the formula (33)
where ˇj D ˇj.x; t/ solve the Whitham modulations equations (22). The phase �0 in
the argument of the theta-function will be described below. In the next section we
will explain how to construct the solution of the Whitham equations.

3.2.1 Solution of the Whitham Equations

The solution ˇ1.x; t/ > ˇ2.x; t/ > ˇ3.x; t/ of the Whitham equations can be
considered as branches of a multivalued function and it is fixed by the following
conditions.

• Let .xc; tc/ be the critical point where the solution of the Hopf equation develops
its first singularity and let uc D v.xc; tc/. Then at t D tc

ˇ1.xc; tc/ D ˇ2.xc; tc/ D ˇ3.xc; tc/ D ucI

• for t > tc the solution of the Whitham equations is fixed by the boundary value
problem

– when ˇ2.x; t/ D ˇ3.x; t/, then ˇ1.x; t/ D v.x; t/;
– when ˇ1.x; t/ D ˇ2.x; t/, then ˇ3.x; t/ D v.x; t/,

where v.x; t/ solve the Hopf equation, see Fig. 4.

From the integrability of the KdV equation, one has the integrability of the Whitham
equations [18]. This is a non trivial fact. However we give it for granted and assume
that the Whitham equations have an infinite family of commuting flows:

@

@s
ˇi C wi

@

@x
ˇi D 0; i D 1; 2; 3:
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The compatibility condition of the above flows with the Whitham equations (22),

implies that
@

@t

@

@s
ˇi D @

@s

@

@t
ˇi. From these compatibility conditions it follows that

1

wi � wj

@

@̌ j
wi D 1

	i � 	j

@

@̌ j
	i; i ¤ j (46)

where the speeds 	i’s are defined in (22).
Tsarev [53] showed that if the wi D wi.ˇ1; ˇ2; ˇ3/ satisfy the above linear

overdetermined system, then the formula

x D 	it C wi; i D 1; 2; 3; (47)

that is a generalisation of the method of characteristics, gives a local solution of the
Whitham equations (22). Indeed by subtracting two equations in (47) with different
indices we obtain

.	i � 	j/t C wi � wj D 0; or t D �wi � wj

	i � 	j : (48)

Taking the derivative with respect to x of the hodograph equation (47) gives

3X
jD1

�
@	i

@̌ j
t C @wi

@̌ j

�
@̌ j

@x
D 1:

Substituting in the above formula the time as in (48) and using (46), one get that
only the term with j D i surveys, namely

�
@	i

@̌ i
t C @wi

@̌ i

�
@̌ i

@x
D 1:

In the same way, making the derivative with respect to time of (47) one obtains

�
@	i

@̌ i
t C @wi

@̌ i

�
@̌ i

@t
C 	i D 0:

The above two equations are equivalent to the Whitham system (22). The transfor-
mation (47) is called also hodograph transform. To complete the integration one
needs to specify the quantities wi that satisfy the linear overdetermined system (46).
As a formal ansatz we look for a conservation law of the form

@sk C @x.kq/ D 0;

with k the wave number and the function q D q.ˇ1; ˇ2; ˇ3/ to be determined (recall
that q D 2.ˇ1 C ˇ2 C ˇ3/ for the Whitham equations (22)). Assuming that the ˇi
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evolves independently, such ansatz gives wi of the form

wi D 1

2

 
vi � 2

3X
kD1

ˇk

!
@q

@̌ i
C q; i D 1; 2; 3: (49)

Plugging the expression (49) into (46), one obtains equations for the function q D
q.ˇ1; ˇ2; ˇ3/

@q

@̌ i
� @q

@̌ j
D 2.ˇi � ˇj/

@2q

@̌ i@̌ j
; i ¤ j; i; j D 1; 2; 3: (50)

Such system of equations is a linear over-determined system of Euler-Poisson
Darboux type and it was obtained in [30] and [50]. The boundary conditions on the
ˇi specified at the beginning of the section fix uniquely the solution. The integration
of (50) was performed for particular initial data in several different works (see e.g.
[34], or [30, 44]) and for general smooth initial data in [50, 51]. The boundary
conditions require that when ˇ1 D ˇ2 D ˇ3 D ˇ, then q.ˇ; ˇ; ˇ/ D hL.ˇ/ where
hL is the inverse of the decreasing part of the initial data f .x/. The resulting function
q.ˇ1; ˇ2; ˇ3/ is [50]

q.ˇ1; ˇ2; ˇ3/ D 1

2
p
2�

Z 1

�1

Z 1

�1
d�d�

hL.
1C�
2
. 1C�

2
ˇ1 C 1��

2
ˇ2/C 1��

2
ˇ3/p

1 � �p
1 � �2 :

(51)

For initial data with a single negative hump, such formula is valid as long as ˇ3 >
fmin which is the minimum value of the initial data. When ˇ3 goes beyond the hump
one needs to take into account also the increasing part hR of the inverse the initial
data f , namely [51] (Fig. 4)

q.ˇ1; ˇ2; ˇ3/ D 1

2�

Z ˇ1

ˇ2

d	

 Z �1

ˇ3

d�hR.�/p
	 � �

C
Z 	

�1
d�hL.�/p
	 � �

!

p
.ˇ1 � 	/.	 � ˇ2/.	 � ˇ3/

: (52)

Equations (47) define ˇj, j D 1; 2; 3, in an implicit way as a function of x and t.
The actual solvability of (47) for ˇj D ˇj.x; t/ was obtained in a series of papers
by Fei-Ran Tian [49, 51]. The Whitham equations are a systems of hyperbolic
equations, and generically their solution can suffer blow up of the gradients in finite
time. When this happen the small � asymptotic of the solution of the KdV equation
is described by higher order �-functions and the so called multi-phase Whitham
equations [24]. So generically speaking the solvability of system (47) is not an
obvious fact. The main results of [49, 50] concerning this issue are the following:

• if the decreasing part of the initial data, hL is such that h000
L .uc/ < 0 (generic

condition) then the solution of the Whitham equation exists for short times t > tc.
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Fig. 4 The thick line (green, red and black) shows the solution of the Whitham equations
ˇ1.x; t/ 	 ˇ2.x; t/ 	 ˇ3.x; t/ at t D 0:4 as branches of a multivalued function for the initial
data f .x/ D �sech2.x/. At this time, ˇ3 goes beyond the negative hump of the initial data and
formula (52) has been used. The solution of the Hopf equation including the multivalued region is
plotted with a dashed grey line, while the solution of the KdV equation for � D 10�2 is plotted
with a blue line. We observe that the multivalued region for the Hopf solution is sensible smaller
then the region where the oscillations develops, while the Whitham zone is slightly smaller

• If furthermore, the initial data f .x/ is step-like and non increasing, then under
some mild extra assumptions, the solution of the Whitham equations exists for
short times t > tc and for all times t > T where T is a sufficiently large time.

These results show that the Gurevich Pitaevski description of the dispersive shock
waves is generically valid for short times t > tc and, for non increasing initial data,
for all times t > T where T is sufficiently large. At the intermediate times, the
asymptotic description of the KdV solution is generically given by the modulated
multiphase solution of KdV (quasi-periodic in x and t ) where the wave parameters
evolve according to the multi-phase Whitham equations [24]. The study of these
intermediate times has been considered in [1, 4, 27].

To complete the description of the dispersive shock wave we need to specify the
phase of the oscillations in (54). Such phase was derived in [16] and takes the form

�0 D �kq; (53)

where k D �
p
ˇ1 � ˇ3
K.m/

is the wave number and the function q D q.ˇ1; ˇ2; ˇ3/

has been defined in (51) or (52). The simple form (53) of the phase was obtained
in [25]. Finally the solution of the KdV equation u.x; tI �/ as � ! 0 is described as
follows

• in the region strictly inside the cusp x�.t/ < x < xC.t/ it is given by the
asymptotic formula

u.x; t; �/ D ˇ1 C ˇ2 C ˇ3 C 2˛ C 2�2
@2

@x2
log#

�
kx � !t � kq/

2��
I �
�

C O.�/

(54)
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where ˇj D ˇj.x; t/ is the solution of the Whitham equation constructed in this
section, see Fig. 5. The wave number k, the frequency ! and the quantities � and
˛ are defined in (31), (34) and (24) respectively and q is defined in (51) and (52).
When performing the x-derivative in (54) observe that

@x.kx � !t � kq/ D k;

because of (47) and (49).
• For x > xC.t/C ı and x < x�.t/ � ı for some positive ı > 0, the KdV solution

is approximated by

u.x; t; �/ D v.x; t/C O.�2/

where v.x; t/ is the solution of the Hopf equation.

Let us stress the meaning of the formula (54): such formula shows that the
leading order behaviour of the KdV solution u.x; tI �/ in the limit � ! 0 and for
generic initial data is given in a cusp-shape region of the .x; t/ plane by the periodic
travelling wave of KdV. However to complete the description one still needs to
solve an initial value problem, for three hyperbolic equations, namely the Whitham
equations, but the gain is that these equations are independent from �.

A first approximation of the boundary x˙.t/ of the oscillatory zone for t � tc
small, has been obtained in [25] by taking the limit of (47) when ˇ1 D ˇ2 and
ˇ2 D ˇ3. This gives

xC.t/ ' xc C 6uc.t � tc/C 4
p
10

3
p�h000

L .uc/
.t � tc/

3
2 ;

x�.t/ ' xc C 6uc.t � tc/� 36
p
2p�h000

L .uc/
.t � tc/

3
2 ;

where hL is the decreasing part of the initial data. Such formulas coincide with the
one obtained in [28] for cubic initial data.

We conclude pointing out that in [25] a numerical comparison of the asymptotic
formula (54) with the actual KdV solution u.x; tI �/ has been considered for the
initial data f .x/ D �sech2x. Such numerical comparison has shown the existence
of transition zones between the oscillatory and non oscillatory regions that are
described by Painlevé trascendant and elementary functions [8–10]. Looking for
example to Fig. 5 it is clear that the KdV oscillatory region is slightly larger then the
region described by the elliptic asymptotic (54) where the oscillations are confined
to x�.t/ � x � xC.t/.

Of particular interest is the solution of the KdV equation near the region where
the oscillations are almost linear, namely near the point x�.t/. It is known [27, 49]
that taking the limit of the hodograph transform (47) when ˇ2 D ˇ3 D � and
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Fig. 5 The solution of the KdV equation and its approximations for the initial data f .x/ D
�sech2.x/ and � D 10�2 at two different times t D 0:3 and t D 0:4. The blue dash-dot line
is the KdV solution, the black line is the elliptic asymptotic formula (54) which is on top of the
KdV solution, the black dash line is the solution of the Hopf equation while the green, red and
aviation blue lines are the solution of the Whitham equations ˇ1 	 ˇ2 	 ˇ3

ˇ1 D v, one obtains the system of equations

8<
:

x�.t/ D 6tv.t/C hL.v.t//;
6t C �.�.t/I v.t// D 0;

@��.�.t/I v.t// D 0;

(55)

that determines uniquely x�.t/ and v.t/ > �.t/. In the above equation the function

�.�I v/ D 1

2
p
v � �

Z v

�

h0
L.y/dyp
y � �

; (56)

and hL is the decreasing part of the initial data. The behaviour of the KdV solution
is described near the edge x�.t/ by linear oscillations, where the envelope of the
oscillations is given by the Hasting Mcleod solution to the Painlevé II equation:

q00.s/ D sq C 2q3.s/: (57)

The special solution in which we are interested, is the Hastings-McLeod solution
[31] which is uniquely determined by the boundary conditions

q.s/ D p�s=2.1C o.1//; as s ! �1, (58)

q.s/ D Ai.s/.1C o.1//; as s ! C1, (59)

where Ai.s/ is the Airy function. Although any Painlevé II solution has an infinite
number of poles in the complex plane, the Hastings-McLeod solution q.s/ is smooth
for all real values of s [31] .
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The KdV solution near x�.t/ and in the limit � ! 0 in such a way that

lim
�!0

x!x�.t/

x � x�.t/
�2=3

;

remains finite, is given by [10]

u.x; t; �/ D v.t/ � 4�1=3

c1=3
q .s.x; t; �// cos

�
�.x; t/

�

�
C O.�

2
3 /: (60)

where

�.x; t/ D 2
p
v � �.x � x�/C 2

Z v

�

.h0
L.y/C 6t/

p
y � �dy

and

c D �pv � �
@2

@�2
�.�I v/ > 0; s.x; t; �/ D � x � x�.t/

c1=3
p
v � � �2=3 :

Note that the leading order term in the expansion (60) of u.x; t; �/ is given
by v.t/ that solves the Hopf equation while the oscillatory term is of order �1=3

with oscillations of wavelength proportional to � and amplitude proportional to the
Hastings-McLeod solution q of the Painlevé II equation. From the practical point
of view it is easier to use formula (60), then (54) since one needs to solve only an
ODE (the Painlevé II equation) and three algebraic equations, namely (55). One can
see from Fig. 6 that the asymptotic formula (60) gives a good approximation (up to

Fig. 6 The solution of the KdV equation in blue and its approximation (60) in green for the initial
data f .x/ D �sech2.x/ and � D 10�2 at t D 0:4. One can see that the green and blue lines are
completely overlapped when the oscillations are small
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an error O.�
2
3 /) of the KdV solution near the leading edge where the oscillations

are linear, while inside the Whitham zone, it gives a qualitative description of the
oscillations [26].

We conclude by stressing that the asymptotic descriptions reviewed in this
chapter for the KdV equation can be developed for other integrable equations like
the nonlinear Schrödinger equation, [36] the Camass-Holm equation [6] or the
modified KdV equation [38], see also [19] for a more general class of equations.
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Dispersive Shock Waves: From Water Waves
to Nonlinear Optics

Matteo Conforti and Stefano Trillo

Abstract Dispersive shock waves are strongly oscillating wave trains that sponta-
neously form and expand thanks to the action of weak dispersion, which contrasts
the tendency, driven by the nonlinearity, to develop a gradient catastrophe. Here
we review the basic concepts and recent progresses made in the description of
such nonlinear waves, both in terms of experimental results and modelling. In
particular, we discuss the formation of dispersive shocks in shallow water, which
can be described in terms of Korteweg-de Vries or Whitham nonlocal equations. We
contrast such results with those obtained in the field of nonlinear optics, described in
terms of local or nonlocal nonlinear Schrödinger equations. Finally we show that a
dispersive shock propagating under the action of small perturbations can radiate. A
perturbative approach allows for the accurate prediction of the radiated frequencies.

1 Introduction

Dispersive shock waves (DSWs) are non-stationary wave trains that develop
spontaneously in weakly dispersive nonlinear media [1]. The nonlinearity induces
front steepening and hence the tendency to develop a gradient catastrophe. A weak
dispersion plays a secondary role until steep gradients are eventually formed. At
this stage dispersion becomes effective, inducing the onset of strong oscillations
which expand in a characteristic fan in the space-time plane. The borders of this
fan represent the leading and the trailing edge of the DSW, where the amplitude of
the oscillations are largest and vanishingly small, respectively. DSWs constitute the
dispersive counterpart of viscous regularization of classical shock waves [2], which
occurs when the dissipation dominates over the dispersive effects.
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The investigation of DSWs has a long history that starts with pioneering con-
tributions in the 60s and the 70s, when DSWs were mainly known as collisionless
shocks. Indeed Sagdeev and coworkers first predicted the oscillatory nature of the
shock occurring in the extremely rarefied (collisionless) plasma [3]. The observation
of such dispersive breaking in the lab was reported as early as 1970 [4]. From the
theory point of view, the weakly dispersive Korteweg-de Vries (KdV) equation [5–
7] have had a pivotal role in the early developments. In 1965 Zabuski and Kruskal
[8] investigated soliton-like excitations emerging from the dispersive breaking of a
sinusoidal wave. This can be thought of as the periodic analog of smooth waveforms
containing a large number of solitons, which start to emerge after a wavebreaking
defined in the dispersionless limit. However, more generally DSWs do not require
soliton content to develop. A milestone towards a more general description was the
solution of the Riemann problem (the evolution of a step initial datum) for the KdV,
reported by Gurevich and Pitaeviskii [9], who proposed the first explicit construction
of a DSW by exploiting Whitham modulation theory [10]. Later on, the limit of
vanishing dispersion was rigorously formulated for the KdV in the framework of
the inverse scattering theory [11–15]. On the other hand, the modulation approach
was soon extended to the defocusing nonlinear Schrödinger (NLS) equation [16, 17]
and then deepened during several decades (see e.g. [18–21], and for more details
the chapter by T. Grava and references therein in this book), remaining a powerful
technique to describe the long-time asymptotic of the DSW past the breaking point
developing in the dispersionless limit. The picture that has globally emerged is
that the physical phenomena and the tools employed to analyse such behaviour are
common to a wide class of PDE models, both integrable and non-integrable [22, 23].

On the experimental side, many progresses have been made just recently. The
purpose of this chapter is to review some recent results that concern the observation
of DSW in shallow water and in nonlinear optics. In both areas the dispersive effects
on breaking of waves was specifically assessed in the past both theoretically [24–
26] and experimentally [27–32] in water waves (where DSW are commonly named
as undular bores), as well as in fiber optics [33–37]. However, it is only recently
that the renewed interest in DSWs have permitted to explore new regimes, to obtain
new data with higher resolution, and to predict new phenomena [38–47]. This also
allowed for making more accurate comparisons with the models in order to assess
their limit of validity and the importance that previously neglected ingredients can
have. For instance, as we will show in the following, nonlocality turns out to be
important, though at different levels, both in water waves and optics, where it affects
the linear or the nonlinear response, respectively.

The chapter is structured as follows. In Sect. 2 we review the basic concepts
of classical shock waves and their dissipative versus dispersive regularisation. In
Sect. 3 we present a DSW experiment made in a shallow water tank. In Sect. 4, we
discuss optical DSWs. Finally in Sect. 5 we discuss the mechanisms that allows
DSWs to resonantly radiate, a phenomenon observed and interpreted just recently.
We summarise in Sect. 6.
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2 Classical Shock Waves and Regularising Mechanisms

In this section we recall the basic concepts in the theory of shock waves. We
privilege the physical intuition rather than aspiring to be mathematically rigorous. In
order to understand the basic differences between classical shock waves and DSWs,
let us start with the simplest hyperbolic model for nonlinear wave propagation,
namely the Hopf or inviscid Burgers (or generally nonlinear transport) equation
written in conventional variables x (space) and t (time)

ut C uux D 0 , ut C fx.u/ D 0I f .u/ D u2

2
; (1)

which conveniently generalises the unidirectional linear wave (or advection) equa-
tion ut C cux D 0 to the case where the velocity becomes proportional to the local
wave elevation, i.e. c D c.u/ D u (the arguments that follow hold true also for more
general dependences, e.g. c.u/ D un, n positive integer). The formulation on the
right of Eq. (1) is called flux conservative form (or conservation law), f .u/ being
the flux associated with the wave field u, which usually has the meaning (in fluid
dynamics, traffic flow, crowd behavior,. . . ) of a density. In the linear case, the initial
disturbance does not change shape and travels with velocity c. Stated differently,
we can say that, given any input disturbance, the values u0 D u.x0; t D 0/ are
transported along the characteristic lines x.t/ D x0 C ct, which are the oblique
parallel lines shown in Fig. 1a. Conversely, in the nonlinear case where the velocity
becomes proportional to the wave elevation itself, such characteristics become
x.t/ D x0 C c.u0.x0//t which are no longer parallel. This reflects the fact that, in
particular, along a negative slope front, the higher parts of the wave tends to catch up
on the less intense ones, until an infinite gradient is formed at a finite breaking time
tb. In the Hopf equation the breaking time is easily calculated to be tb D 1=.�m/,
where m is the maximal negative slope. An example is displayed in Fig. 1b for a
Gaussian input.
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Fig. 1 (a) Linear case: transport of a Gaussian field along characteristics (lines at slope 1=c), ruled
by advection equation utCcux D 0; (b) nonlinear case: Gaussian developing a gradient catastrophe
at time t D tb. The dashed red line is the classical shock wave which has location xs D xs.t/; (c)
corresponding shock dynamics in the plane .x; t/. The first point where characteristic lines intersect
stands for the gradient catastrophe point occurring at the breaking time tb. The red dashed curve
xs.t/ emanating from this point corresponds to the shock wave evolution
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The time tb is the finite time necessary for the catastrophe to develop and
corresponds to the earliest time where the characteristics intersect [see Fig. 1c]. For
t > tb the wave becomes multivalued. A remedy for not dealing with multivalued
functions is to introduce a jump [2, 48], as exemplified by the red dashed vertical line
in Fig. 1b. This, however, requires to generalise the solution of Eq. (1) for piecewise
smooth functions which include a jump. To this end one must resort to the more
general integral formulation of the conservation law (from which Eq. (1) derives)

d

dt

Z b

a
u.x; t/dx D f .a; t/ � f .b; t/; (2)

which states that in the interval .a; b/ the rate of change of mass (integral of density)
is given by the difference between the incoming and outgoing flux. In general, across
a moving discontinuity xs.t/, with a � xs.t/ � b, Eq. (2) reduces to (we omit the
proof, which can be found in many textbooks)

vs D dxs.t/

dt
D f .x�

s ; t/ � f .xC
s ; t/

u.x�
s ; t/ � u.xC

s ; t/
D Œ f �

Œu�
; (3)

which is known as Rankine-Hugoniot (RH) condition (Œ: : :� is the contracted
notation for the difference of the quantity inside parenthesis across the jump).
Equation (3) gives the instantaneous velocity of the jump vs for a general one-
dimensional conservation law with flux f . A piecewise smooth solution of the
conservation law ut C fx D 0 with a jump that fulfils the RH condition is a classical
shock wave of the model with shock path xs.t/.

Returning to the specific example of the Hopf equation (1), one can consider,
as a particular case, a step-like initial datum located in x D 0, i.e. a jump from
u.x � 0; t D 0/ D uL to u.x > 0; t D 0/ D uR. In this case breaking occurs at
t D 0where the characteristic already intersect. The RH condition gives the constant
velocity vs D .uL C uR/=2 (D 1=2 for a unit amplitude jump to zero), and the shock
path is xs D vst. The solution (via characteristics jointed to the RH condition) tells
that the jump remain unchanged except for a rigid translation with constant velocity
vs. This is an example of classical shock wave. In the more general case where the
initial value is smooth the RH condition is equivalent to select one curve inside the
fan of intersecting characteristics [see red curve labeled xs.t/ in Fig. 1c]. Although
not explicitly stated so far, the compatibility for a classical shock wave solution
requires the so-called entropy condition uL > uR, implicitly considered to be valid
in our example. In the opposite case uR > uL the shock is no longer compatible
with the conservation law and the relevant solution is a rarefaction wave (see Fig. 2
below for an example) [2, 48].

Although the classical shock waves constitute an important tool in many
problems of fluid dynamics, usually in the real world one observes their regularised
form, which is due to physical ingredients which are not accounted for in Eq. (1).
The phenomena which are relevant can be grouped into two main classes, namely
dissipative and dispersive effects. As far as Eq. (1) is concerned, these effects are
related (at leading orders) to the lowest-order even and odd spatial derivatives
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Fig. 2 (a) Snapshots comparing the Hopf and weakly dispersing KdV ("2 D 0:01) post-breaking
evolutions obtained from a negative slope smooth input. Here u.x; 0/ D .1 � tanh.x//=2 (dashed
curve), which yields a breaking time tb D 2. (b) Snapshot from KdV integration, with "2 D 0:002

and a boxed well as initial value (blue curve). The negative slope jump gives rise to a DSW, while
the positive slope jump results into a rarefaction wave

in x, respectively. For instance the dissipative generalisation of Eq. (1) leads to the
famous Burgers equation

ut C uux D ˛uxx; (4)

which has the shock solution of unit amplitude u D 1
2

˚
1C tanh

�
1
4˛

�
t � 1

2
x
	�


. In
this case, the shock wave is now smooth, due to dissipation. In the limit ˛ ! 0, such
solution reduces to the unit jump (classical shock wave) solution of Eq. (1) with the
same velocity predicted by the RH condition vs D 1=2. Therefore dissipation does
not alter the velocity, but only introduces a characteristic width 4˛ of the shock,
which consistently shrinks to zero in the lossless limit.

Viceversa, by adding to Eq. (1) the lowest-order dispersive contribution uxxx
(recall that the first odd derivative ux is a linear velocity term which is removable by
introducing a shifted coordinate), weighted by a coefficient "2, one obtains the well
known KdV equation

ut C uux C "2uxxx D 0: (5)

Let us now compare the solution of the Hopf equation (1) and the weakly
dispersing (" � 1) KdV equation (5) when the initial waveform is a smooth
negative slope input which undergoes breaking. A typical example is displayed
in Fig. 2a. In this case, for t > tb (tb D 2 in the example), the Hopf equation
gives overtaking, i.e. a multivalued field as shown by the black curve. Conversely
the KdV does not exhibit any catastrophe and the dynamics remains smooth at all
times. The equation reacts to the strong gradient produced by the nonlinearity, with
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the onset of spontaneous modulated oscillations. The oscillating field appear on
the steepened front at slightly earlier times than the breaking time tb, and spread
afterwards, becoming more pronounced around the front. As shown in Fig. 2a, at
a finite time t D 6, these oscillations have regularised the pronounced multivalued
jump produced by the Hopf equation. Outside the region filled with oscillations the
two equations give the same solution. Globally this constitutes a DSW, characterized
by a single phase (the phase of the modulated periodic nonlinear wave).

Conversely, if we integrate the KdV with initial value given by a box-shaped
well, we obtain the result shown in Fig. 2b. While the negative slope part gives rise
to a DSW as discussed before, the positive slope front gives rise to a rarefaction
wave, i.e. a front which smooths out as it propagates. At sufficiently large times, the
rarefaction wave can interact with the DSW, giving a deformation of the latter. By
comparing Fig. 2a and b, it can be noticed that the period of the oscillation decreases
for smaller ". Furthermore, we notice from Fig. 2b that the peak oscillation is twice
the jump, as predicted on the basis of the solution of the Riemann problem in the
framework of the inverse scattering [49]. In general the region filled with oscillations
can be characterised asymptotically in terms of Whitham modulation theory as a
cn�oidal wave (an invariant periodic wave solution of the KdV) which has slowly
varying parameters (amplitude, period, and velocity). In particular, one can show
that the modulated periodic wave ranges from a local soliton on the leading edge
(largest amplitude of the oscillating wavetrain) to linear waves with amplitude
tending to zero, on the trailing edge. We point out that the adjective “local” means
that the modulus of the modulated Jacobian function m tends to one (as it is for a
soliton) only on the leading edge, without implying that the wave contains discrete
eigenvalues corresponding to true solitons.

Importantly, for DSWs the single velocity of the classical shock is replaced by
the two characteristic velocities of the leading and trailing edges of the shock,
respectively. Moreover it is important to emphasise that, at variance with the
dissipative case, the limit "2 ! 0 does not give the corresponding classical shock,
since the oscillations become shorter and denser as "2 decreases. In other words,
the formal position "2 D 0 is only useful to determine the dispersionless limit of
Eq. (5), i.e. the Hopf equation (1) which governs the breaking mechanism before
the dispersion becomes important. Conversely the asymptotic for "2 ! 0 should be
formulated in the framework of the modulation theory and never gives the classical
shock wave.

3 Dispersive Shocks in Shallow Water

It is well known that surface gravity waves with long wavelength, propagating in
shallow water, can be modeled in terms of a KdV equation. In dimensional form,
calling henceforth z the direction of propagation, the KdV takes the following form:

�t C c0�z C 3

2

c0
h
��z C 1

6
c0h

2�zzz D 0; (6)
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where � is the water elevation over the still water height h, c0 D p
gh is the

phase velocity of linear waves. What is less appreciated is that experiments are
usually made in a tank by launching waveforms with controlled temporal shape at
a fixed ideal plane (the wave maker, z D 0) and measuring time series at fixed
locations along the tank. Therefore the modeling is more conveniently performed
by writing the KdV equation as an evolution equation in space, in such a way that
one can directly compare the measured time series with those obtained by solving
the Chauchy problem for the KdV, by advancing the solution in space (interestingly
enough, as we show below, this is analogous to what is routinely done in optical
fibers, and described in terms of NLS model [35, 46]). Therefore one should make
use of the following time-like Korteweg-de Vries (T-KdV) equation [50, 51],

�z C 1

c0
�t � ���t � ˇ3�ttt D 0I � D 3

2

1

c0h
I ˇ3 D 1

6

h2

c30
; (7)

where the initial value is in general �.z D 0; t/ D �0f0.t=t0/, �0 and t0 being the peak
wave amplitude and duration, respectively, and f0.t/ fixes the shape (normalized so
to have absolute unit maximum). Equation (7) can be easily derived from Eq. (6)
by means of the leading order relation �z 
 ��t=c0. As discussed in [47], Eq. (7)
possess a linear dispersion relationship D.!; k/ D k � !=c0 � !3h2=.6c30/ D 0,
which better approximates (at large values of kh) the exact dispersion relationship
!.k/ D p

gk tanh.kh/, compared with the dispersion relationship of the standard
form of the KdV [Eq. (6)] D.!; k/ D ! � c0k C .c0h2=6/k3 D 0.

In order to compare with the previous section, and in particular Eq. (5), it is useful
to cast the T-KdV equation (7) in dimensionless form

u� � uu� � "2u��� D 0; (8)

where we introduce the normalized retarded time � D .t � z=c0/=t0 and distance
� D z=Lnl, as well as the normalized elevation u D �=�0. Here Lnl D t0=.��0/
is the nonlinear length, i.e. the characteristic length scale after which the effects
due to the nonlinearity become significant. The relative weight of the dispersive
effect is measured by the ratio between Lnl and the characteristic length scale of the
dispersion, namely Ld D t30=ˇ3 , i.e. by the smallness parameter

"2 D Lnl
Ld

D ˇ3

�

1

�0t20
D 1

9

h3

c20

1

�0t20
D .2�/2

9

1

U
; (9)

where the last equality gives the link with the Ursell number U � .�0=h/.	=h/2

[28, 52]. It is important to emphasise that, for a given choice of initial shape, the
evolution ruled by Eq. (8) implies that the features of the DSW depend only on
the value of ". However, in a real experiment the real-world length scale of the
DSW evolution, depends also on the value of the nonlinear length. In other words
what matters are both the ratio Lnl=Ld (which mainly affect the period of the DSW
oscillations) and the absolute value of nonlinear length Lnl (which mainly affects the
length scale of the dynamics).
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Fig. 3 Surface elevation measured at different distances z from the wave maker (z D 0). Here the
nominal initial conditions is a depression �.0; t/ D ��0sech2.t=t0/ with amplitude �0 D 4 cm and
duration t0 D 1:27 s. The dispersion smallness parameter is "2 D 0:028 (Ursell number U D 157)
and the nonlinear length is Lnl D 16:8m. One can clearly notice, on top of the rigid translation due
to the phase velocity c0, the different velocities of the leading and trailing edges of the spreading
DSW. See also [47]

We show in Fig. 3a typical DSW evolution dynamics recently observed in the sea-
keeping basin of the Technical University of Berlin. The basin has a measuring range
of L D 90m, a width of 8 m, and the water depth has been adjusted to h D 40 cm.
The wave elevation is measured by gauges at fixed locations z D 5C .k � 1/10m,
k D 1; : : : ; 8, from the wave maker at z D 0. At the end of the tank an absorbing
beach limits the impact of the reflection. The typical time series generated by a
nominal excitation f .t/ D �sech2.t/ are shown at distance z D 5; 25; 45; 65 in
Fig. 3. Since this initial condition contains no solitons, the evolution is dominated
by the formation of a DSW. In particular, we notice that one of the initially smooth
fronts exhibits a considerable steepening front already at 5 m. Note that, contrary
to the case discussed in Fig. 1, it is the positive slope temporal front that steepens
consistently with the minus sign in front of the nonlinear term in the T-KdV
(7). At longer distances the negative front smooths out generating a rarefaction
wave, whereas the steepened front give birth to an expanding modulated train of
oscillations. The small (linear) oscillations that arrives later at the end of the tank
start to becomes affected by the reflection at the last gauge (data not shown).

A more extended DSW can be observed over the length of the tank, for a shorter
nonlinear length even with slightly larger value of ". This case is displayed in Fig. 4,
where the right panel shows the measured elevation at 45m, obtained for the same
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Fig. 4 Left panel: Surface elevation measured at 45m, along with its Fourier spectrum. Here �0 D
10 cm, t0 D 0:64 s, "2 D 0:045 (U D 98), and Lnl D 3:4m. Right double panel: Data from the
left panel compared with the elevation computed according to the T-KdV (upper panel) or T-
Whitham (lower panel). In both cases the data at the first gauge are used as the initial value for the
computation. See also [47]

initial shape with amplitude and duration resulting in "2 D 0:045 (U D 98) and
Lnl D 3:4m. As shown a very extended and regular structure is obtained which
exhibits > 50 clean oscillations. The DSW continues to expand further but the
oscillations on the trailing edge becomes affected by the reflection of the leading
edge which arrives earlier at the end of the tank. The spectrum clearly show the
non monochromatic character of the DSW with a peak ascribed to the leading edge,
followed by a long tail towards high frequencies due to the trailing edge.

In order to assess whether the T � KdV is a good model, we have compared
the data with the outcome of the numerical integration of Eq. (7), using the data
recorded at the first gauge as initial value. The comparison is shown in the upper
right panel in Fig. 4. While the general agreement is satisfactory, some discrepancy
can be noticed along the trailing edge. Since this corresponds to the higher frequency
tail of the spectrum that challenges the validity of the KdV, better accuracy can be
obtained by replacing the term uxxx with a convolution, as suggested by Whitham,
which leads to the equation named after him [53, 54]. This allows to account for
the full unidirectional dispersion relation of surface gravity waves, at the price of
introducing nonlocality (in time) in the model. Consistently with the T-KdV, the
nonlocal Whitham equation can be cast as an evolution equation in z, obtaining
a T-Whitham equation. The latter, once written in terms of the Fourier Transform
operator in time F Œ: : :�, reads as

�z � ���t � F�1 Œi sign.!/k.!/F Œ��� D 0; (10)

where k.!/ results from the inversion of the full linear dispersion relation of surface
gravity waves. The comparison of the data with the integration of Eq. (10) gives
a better description of the trailing edge of the DSW, as shown in the right bottom
panel of Fig. 4.
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To summarise this part, we have shown that DSWs in surface gravity waves can
be generated, observed, and modelled with high accuracy. This is important also
in view of gaining a better understanding of the behaviour of tidal bores [55], the
shoaling of tsunamis [56], and atmospheric gravity waves which present similar
phenomenologies.

4 Dispersive Shocks in Optics

In optics DSWs can be observed in space during the propagation of a laser beam in
a defocusing medium, or in time during the propagation of pulses along fiber optics
in the regime of normal dispersion, which is equivalent to the defocusing regime.
We warn the reader that, in the latter case, the occurrence of shock waves is often
attributed and investigated with reference to higher order cubic terms, which have
relevant effect for ultrashort pulses [57]. However, as we show below, it turns out
that it is the Kerr effect associated with the standard nonlinear term in the NLS, to be
the leading-order effect responsible for wavebreaking (as in the spatial case) under
normal experimental conditions that involve pulses with duration in the range from
a few psec to nsec. Below we discuss the relevant NLS-type of models and show a
few selected experimental results.

4.1 Temporal DSW in Fibers

In an optical fiber, under common experimental conditions where higher order
effects can be safely neglected, the propagation of the electric field envelopeE.Z;T/
can be described by the following equation

iEZ C ik0ET � k00

2
ETT C � jEj2E D 0; (11)

where k0 D dk=d! D 1=Vg and k00 D d2k=d!2 are the inverse group-velocity and
second-order dispersion, and � is the nonlinear coefficient (usually measured in (W
km)�1 with jEj2 giving directly the power in W). It is useful to recall that, unlike the
KdV, the NLS equation is an envelope equation where E.Z;T/ turns out to slowly
modulate a carrier wave expŒik.!0/z � i!0t� at frequency !0, where the derivatives
k0; k00 are calculated.

In the normal dispersion regime where k00 > 0, by denoting by P D max.jE.Z D
0;T/j2/ and t0 the peak power and the duration of the input envelope E.Z D 0;T/,
and introducing the characteristic length scales for the nonlinearity and dispersion,
namely Lnl D .�P/�1 and Ld D t20=jk00j, Eq. (11) can be cast in the form

i" z � "2

2
 tt C j j2 D 0; " D

s
Lnl
Ld

(12)
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where  D E=
p
P, t D .T � Z=Vg/=t0, and z D Z=

p
LnlLd. By means of the

WKB (or Madelung) transformation u.t; z/ D p
�.t; z/ expŒiS.t; z/="� applied to

Eq. (12), at leading order (i.e., neglecting a O."2/ term), we obtain the following
dispersionless NLS model [16]

�z C .�u/t D 0I uz C uut C �t D 0; (13)

where u D �St stands for the chirp. Equations (13) are equivalent to the disper-
sionless shallow water (or Saint Venant) equations in dimensions 1+1D, where �
and u stand for the water elevation and the vertically averaged velocity, respectively,
or a specific version of the p�system of gas dynamics, valid for an isentropic gas
with adiabatic index � D 2, i.e. pressure law p D �2=2. Equations (13) play the
same role played by the Hopf equation for the KdV, i.e. Eqs. (13) are dispersionless
hyperbolic equations which rule the evolution of the wave up to the catastrophe
point where it develops infinite gradients. They are diagonalisable in the form
rż C Œ.3r˙ C r�/=4�rṫ D 0 in terms of the Riemann invariants r˙ D u ˙ 2

p
�.

Although in principle they can be solved in terms of the hodograph transform, in
general no simple expressions can be given for the breaking time.

Importantly, the NLS equation exhibits two main different type of breaking
depending on the input waveform, as shown in Fig. 5. For a bright bell-shaped
(e.g., Gaussian) input on a finite background the effective defocusing action, which
is stronger on the top of the pulse, induces the beam to broaden and steepen
symmetrically on both fronts, until two symmetric catastrophes occur. As a result
the dispersive regularisation exhibits two DSWs expanding in two symmetric fans
in the t � z plane [see Fig. 5a and b]. This is the type of breaking observed in fibers
[35] (see also [40] for the spatial case and [39] for similar experiments in Bose-
Einstein condensates). Note, however, that the role of the background is extremely
important in terms of the visibility of the oscillating DSW. Indeed the amplitude of
these oscillations greatly reduce in the limit of zero background [16, 17], which is
the case considered in [35].

Fig. 5 DSWs ruled by NLS equation: (a, b) colour level plot (a) and snapshot (b) from a Gaussian
input with 10% pedestal, with " D 0:05; (c, d) colour level plot (c) and snapshot (d) with input
 .t; 0/ D tanh.t/, " D 0:005
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Conversely, when a dark waveform  .t; 0/ D tanh.t/ is launched, the breaking
occurs in the null point of the waveform, i.e. in t D 0. While in the former case
the breaking is generic (only one Riemann invariant develops a singularity at finite
distance z D zb), in this case the breaking is non-generic since both Riemann
invariants experience simultaneous breaking at the origin t D 0 [58] (strictly
speaking the analysis in [58] has been carried out by neglecting the phase jump
but the numerics suggest that the mechanism ruled by Eqs. (13) remains unchanged
in the presence of the phase jump; clearly the asymptotic states differ in the two
cases). The emerging DSW exhibits a single fan with a narrower central zero-
velocity soliton and symmetric pairs around it [see Fig. 5c, d]. Importantly, while
the intermediate stage shown in Fig. 5d shows the typical features of a DSW, the
asymptotic state (z 
 1=") in this case turns out to be very different from the
previous one, being made by a finite number (2N � 1, where N D IntŒ1="�) of
asymptotically separated gray solitons living on the same background. Indeed for
" D 1=N, N integer, tanh.t/ is a reflectionless potential in the language of the inverse
scattering [59]. Therefore, in this case, we can say that we are in the presence of a
purely solitonic DSW (i.e., a multi-soliton solution with a large number of solitons,
which behaves as a DSW at intermediate distances).

More recently, it was pointed out that DSWs play a relevant role also in the
dynamics of multiple four-wave mixing (mFWM). In optics mFWM indicates the
generation of multiple sideband orders at !0 ˙ n˝=2, n odd integer, which is
produced via the cubic Kerr term in the NLS by launching two angular frequencies
!0 ˙ ˝=2 along an optical fiber [60, 61]. When the two frequencies have
equal power, the initial waveform is sinusoidal, and the problem of determining
the evolution of the field in the regime of weak dispersion becomes the NLS
counterpart of the well known problem analysed by Zabusky and Kruskal for
the weakly dispersing KdV [8]. In order to unveil the dynamics we consider
the dimensionless form of the NLS equation (12) subject to the initial condition
 .t; 0/ D p

�0 exp.i!t=2/Cp
1 � �0 exp.�i!t=2/, where �0 D 0:5 in the balanced

case (sinusoidal input) or �0 ¤ 0:5 for the imbalanced case. Without loss of
generality we fix the normalized frequency ! D ˝t0 D � by choosing t0 D 1=2�f
as the characteristic time scale of the modulation,�f D ˝=2� being the frequency
separation between the two pumps. In this way the dynamics depends only on the
parameters " which reads in this specific case " D �f

p
4k00=.�P/ and gives the

scale dependence of the problem [62].
At " D O.1/, only a moderate cyclic (in z) generation of few mFWM orders

occurs, which corresponds in time domain to cyclic compression around the minima
of the squared cosine. However, when " � 1, the dynamics qualitatively changes
as shown in Fig. 6a–c. The cosine exhibits multiple points of breaking at time
t corresponding to the nulls of the input power j .t; 0/j2 D 2 cos2.!t=2/. The
mechanism of breaking is similar to the case of a dark input, except for the fact
that, due to the periodic nature of the problem, the points of breaking are infinitely
many (in time) and correspond to tk D ˙.2k C 1/�=!, k D 0; 1; 2; : : :. Beyond
the breaking point (z ' 0:34), expanding oscillations appear, similarly to the
case shown in Fig. 5c, d. The oscillations fill a fan inside which they appear with
decreasing amplitude towards the fan edges. Each oscillation, once formed, clearly
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.

Fig. 6 (a–c) Breaking of a cosine (balanced dual-frequency) input according to NLS Eq. (12),
" D 0:04: (a) level colorplot of power j j2; (b, c) snapshots of power � D j j2 at breaking
distance z D 0:34 (b) and z D 0:95 (c) compared with the input (dashed blue); (d–f) Case of
two imbalanced spectral line input, �0 D 0:9, " D 0:02: (d) colorplot of j j2; (e, f) snapshot
of power � D j j2 (e) and chirp u D �St (f) comparing the outcomes of NLS (solid lines) and
hydrodynamic limit [Eqs. (13), red open dots] at z D 0:66; input is dashed blue. From [62]

exhibits features of dark solitons (grayness linked to the velocity). They survive
the collisions between adjacent DSW fans, which end up forming a multiphase
region in the plane .t; z/. It is worth emphasising that, strictly speaking, due to the
periodic nature of the problem, the inverse scattering is not formulated in terms of
solitons, but rather in terms of finite-band solutions. However in the limit " ! 0, one
numerically observes that each band shrinks resembling true solitons of the infinite
line problem, while their number grows.

Noteworthy, in the imbalanced case (�0 ¤ 0:5), the temporal locations of the
breaking becomes non-degenerate, and breaking occurs at two distinct instants
around all the minima in tk of the input modulation, as shown in Fig. 6d–f. In this
case, two non-symmetric (right and left going) shock fans emerge from each double
breaking point around tk and collide with the adjacent shock fans, as shown in Fig. 6a
(right panel). Incidentally the same type of phenomenon occurs also in the infinite
line case when the dark input  D tanh.t/ is replaced by a dark excitation with
finite grayness [63].

The phenomenon of DSW in mFWM was recently observed in a fiber optics
experiment, by employing the Picasso platform at Laboratorie Interdisciplinaire
Carnot de Bourgogne in Dijon [46]. The setup allows for the full control of the
input modulation (either in the presence of the carrier or in carrier suppressed
configuration) at the frequency of 28GHz, and to reach the necessary power of
the input under quasi-continuous conditions, i.e. without resorting to pulses, which
would hamper the visibility of the DSW. Furthermore, since one cannot easily
measure the field along a km-long fiber without destroying it, in the experiment
the evolution of the DSW is reconstructed at finite propagation length L D 6 km,
by increasing the power. Indeed changing the power P at fixed length L amounts at
changing the normalized length z D L

p
k00�P=t0. The results are shown in Fig. 7.
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Fig. 7 Measured DSW dynamics due to mFWM with cosine (dual-frequency) input: (a, b)
Color-level plots showing the temporal profiles of the output power obtained at different input
powers from measured data (a), compared with numerical simulations (b), based on NLS Eq. (11);
(c) temporal traces comparing the input file (blue curve) with the output close to the wave-breaking
occurring at P D 25:6 dBm; (d) output spectra in the low-power (P D 13 dBm, pre-shock) and
high-power (P D 34:6 dBm, post-shock) regimes. See also [46]

As shown in Fig. 7a the output temporal traces reported as a function of input
power, clearly mimics the longitudinal evolution [compare in particular Fig. 7a, b
with Fig. 6a], and turn out to be in excellent agreement with the simulation based
on the NLS [see Fig. 7b]. The snapshot at the input power P D 25:6 dBm (dBm
are logarithmic units such that 0 dBm = 1 mW) displayed in Fig. 7c correspond to
the breaking normalized distance, thus being directly comparable with the snapshot
in Fig. 6b. In the Fourier domain, the generation of the DSW corresponds to strong
spectral broadening, featuring the generation of several generated orders of mFWM,
as shown in Fig. 7d. The same setup has permitted to study the imbalanced case
as well as input modulations with three-wave spectrum (a carrier plus sidebands),
giving a complete picture of the breaking phenomena induced by mFWM [46].

We finish this section by mentioning an important connection between the disper-
sionless limit of the NLS (13) and the Hopf equation. If we consider pulses where
the chirp (equivalent hydrodynamical velocity u) is not arbitrary, but rather linked
to the power as u D ˙p

2�, one of the two Riemann invariants identically vanishes.
This is a simple wave in the language of the hyperbolic systems, where the evolution
is governed by the other Riemann invariant, which obeys indeed a Hopf equation
(the same equation can obviously written also for � or u). Therefore, by considering
pulses with phase initially locked to �.t; z D 0/ D 2"�1 R t

�1
p
�.t0; z D 0/dt0, the

evolution follows the Hopf dynamics up to the stage where dispersive effects set in.
This permits additional freedom to enhancing or suppressing the breaking, as well
as a way to control the front where it occurs [64].

Although we have extensively discussed only the defocusing case, we briefly
mention that also the focusing NLS equation can exhibit the formation of a
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singularity. This was predicted on the basis of the dispersionless (or geometric
optics) analog of Eq. (13) for the focusing case, which entails a negative pressure
term (i.e., in the second of Eq. (13), �t ! ��t) [65]. As a consequence, the
dispersionless limit turns out to be elliptic (which reflects the fact that the equation
is modulationally unstable) and a different type of catastrophe occurs. For common
initial waveforms (bright beams with no background) the catastrophe occurs via the
formation of a cusp at the peak, and usually the post-catastrophe dynamics is very
complicated with behavior determined by soliton ensembles [66]. Nevertheless,
under particular conditions, the observed oscillating structure represents the
focusing analog of the DSWs featured by the defocusing case [67].

Finally, we also mention that the defocusing NLS is known to be a valid model
also in shallow water as an envelope equation [68]. However, observing the breaking
of envelope waves in water wave experiments (as opposed to the non-envelope ones
discussed in Sect. 3) is more difficult and was overlooked to date (to the best of our
knowledge).

4.2 Spatial DSW in Bulk Materials

The defocusing NLS model (12) with t ! x (the transverse coordinate x replaces
time) and inverted signs between the dispersive and the nonlinear term, describes
also the propagation of continuous-wave spatial beams in the paraxial regime (for
small spatial frequencies kx, i.e. small angles with the z-axis) in defocusing media
with ideal Kerr response. Although important experiments in photorefractives have
been interpreted in the framework of such model [40, 42], in spatial experiments, the
nonlinear response can in general deviates from the simple ideal Kerr law, where the
refractive index change is n / j j2. Depending on the specific material employed,
the effects of saturation and nonlocality of the nonlinear response need to be taken
into account. The saturation has been discussed in [69], and can be conveniently
modelled by the cubic-quintic NLS with nonlinear terms of opposite signs [70–73].
While it is predicted that the quintic term can qualitatively change the wavebreaking
scenario, to date there is no experimental evidence of this behavior.

Conversely, the nonlocality has been routinely considered to be important in
order to correctly interpret the experiments [41, 43, 44, 74]. In general, it can be
accounted for by allowing the nonlinear term to become a convolution, thereby
obtaining in dimensionless form

i" z C "2

2
r2 �  

Z
K.jx � x’j/j j2.x’; z/dx’ D 0; (14)

where K.x/ is a suitable kernel with normalisation
R1

�1 K.x/dx D 1, which depends
on the material response. Equation (14) involves 1+2D dimensions with x � .x; y/
and r2 D @2xx C @2yy, which is the most general regime that one deals with
in the experiments. We emphasise that, at variance with water waves where the
convolution enters at the linear level, in this case the nonlocality is due to the specific
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mechanisms of the nonlinear response. A fully differential model which has been
widely employed is the paraxial wave equation coupled to a diffusive equation for
the normalized refractive index change n D n.x; y/, which reads as

i" z C "2

2
r2 � n.x; y/  D 0I n � 
2r2n D j j2; (15)

which turns out to be a particular case of Eq. (14) for the kernel choice K D
.1=2�
2/K0.r=
/, where K0 denotes the modified Bessel function of second type
and zero-th order, and r D p

x2 C y2, implicitly assuming azimuthal symmetry.
Here 
 measures the degree of nonlocality (for 
 D 0 the local NLS is recovered).
In particular, the model (15) has been shown to constitute a satisfactory description
of thermal nonlinearities, where nonlocality arise from heat diffusion.

The shock is a strongly local phenomenon. Therefore one might naively expect
that the shock dynamics is strongly modified by the effect of nonlocality and
might eventually disappear. However, interestingly enough, it has been shown that
DSWs still follow a very similar dynamics compared with the local case, at least
for the moderate nonlocality usually observed in experiments carried out, e.g., in
thermal media [41, 43, 44, 74]. For instance, thermal samples have permitted to
make the first observation of the breaking of a dark stripe (tanh.x/ input) [43],
the theory of which has been discussed with reference to Fig. 5c and d. The
experimental result is displayed in Fig. 8, which shows, at sufficiently high input

Fig. 8 Observed breaking of a dark beam with zero intensity and �-phase jump at x D 0, in
a sample with thermal nonlinearity (solution of Rodhamine in methanol). Recorded z-evolution
of the transverse (x) profile of the beam, as seen from scattering over the top of the sample, for
increasing input power Pin: (a) quasi linear regime dominated by diffraction; (b) overcompensating
nonlinearity; (c) generation of the DSW fan; (d) same as in (c) with breaking occurring at shorter
distance. Note that the fringes outside the dark beam which remain nearly constant in all panels,
are a byproduct of the method used to generate the phase-jump. From [43]
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power (Pin D 250–600 mW), the formation of a dark focus point from which a
characteristic shock fan emanates in the .x; z/ plane. The output on the transverse
plane x � y is constituted by multiple dark stripes [43]. This is in contrast with a
similar experiment in a Bose-Einstein condensate [38], where the generated dark
solitons are unstable and are observed to decay into vortices. We attribute the
transverse stability of the optical pattern, in our case, to the suppression of the snake
instability of the generated dark stripe, owing to the effect of nonlocality [75].

5 Radiating Dispersive Shocks

As we have shown above, the dynamics of DSW is understood in terms of weakly
dispersive formulation of integrable models (and their non-integrable deformations)
such as the KdV or the defocusing NLS equations. However, since the leading order
dispersion of such models must be extremely weak for the phenomenon to take
place, one is naturally led to wonder about the impact of higher-order dispersion
(HOD), which must be accounted for to describe the actual dispersion in many
physical situations. The aim of this section is to show that HOD corrections lead
DSWs to emit resonant radiation (RR) due to a specific phase-matching with linear
waves, that can ultimately alter the shock dynamics itself [76–79].

Perturbed DSWs may emit RR owing to the strong spectral broadening that
accompanies wave-breaking, which seeds linear waves that are resonantly amplified
thanks to the well defined velocity of the shock front. We specifically formulate our
approach with reference to temporal pulse propagation ruled by the defocusing NLS
[76], which has immediate application to optical fibers pumped in the normal group-
velocity dispersion regime [77, 80]. In this regime recent experiments have pointed
out the occurrence of RR phenomena [80], which can also have direct impact over
the broadband spectral feature related to the type of supercontinuum developing in
the normal dispersion regime [81].

5.1 NLS Equation with HOD in the Semiclassical Regime

We return to the NLS obeyed in the laboratory frame by a slowly-varying envelope
E.Z;T/ with central frequency !0 and wavenumber k0 D k.!0/. Once the
NLS equation (11) is generalized to account for the all-order expansion of the
wavenumber k.!/ around !0, it can be expressed in terms of the real-world
dispersion operator dT.i@T/ D P

n	1 @n!k .i@T/n=nŠ (all the derivatives being
implicitly evaluated at !0), reading as

iEZ C dT.@T /E C � jEj2E D 0: (16)
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We recall that the defocusing character of the NLS arises from the assumption k00 �
@2!k > 0 (normal dispersion), recalling that � > 0. Adopting the same scaling
used to obtain Eq. (11), by defining all orders of the dispersion coefficients as ˇn D
@n!k=

p
.Lnl/n�2.@2!k/n (note that, by definition, ˇ2 D 1), we recover the generalized

NLS that accounts for HOD, in its weakly dispersing form

i" z C d.i@t/ C j j2 D 0; (17)

d.i@t/ D
X
n	2

ˇn

nŠ
"n .i@t/

n D �"
2

2
@2t � i

ˇ3"
3

6
@3t C ˇ4"

4

24
@4t C : : :

Note that the normalized dispersive operator d.i@t/ has progressively smaller terms,
weighted by powers of the parameter " � 1 and coefficients ˇn.

The process of wave-breaking ruled by Eq. (17) can be described by applying,
again, the Madelung transformation  D p

� exp .iS="/. At leading-order in ",
we obtain a quasi-linear hydrodynamic reduction, with � D j j2 and u D �St
equivalent density and velocity of the flow,

�
�

u

�
z

C A

�
�

u

�
t

I A D
�
a11 a12
1 a11

�
(18)

where the matrix elements are a11 D ˇ2u C ˇ3
2
u2 C ˇ4

6
u3 C ˇ5

24
u4 C

: : : D P
n	2

ˇn
.n�1/Šu

n�1, and a12 D �
�
ˇ2 C ˇ3u C ˇ4

2
u2 C ˇ5

6
u3 C : : :

�
D

�
�P

n	2
ˇn

.n�2/Šu
n�2
�

. This system can be also conveniently diagonalized to yield

rż C V˙rṫ D 0; (19)

by introducing the eigenvelocities (i.e. the eigenvalues of matrix A) V˙ D a11 ˙p
a12 D P

n	2 ˇnun�1=.n � 1/Š ˙
q
�
P

n	2 ˇnun�2=.n � 2/Š and the Riemann

invariants r˙ D u ˙ 2
p
�pP

n�2 ˇnu
n�2=.n�2/Š .

By multiplying the first and the second of Eqs. (18), respectively by u and � and
summing up, we easily recover the equivalent form of a 2 � 2 conservation law
qz C ft.q/ D 0 for q D .�; �u/

�z C
2
4X

n	2

ˇn

.n � 1/Š .�u
n�1/

3
5

t

D 0; (20)

.�u/z C
2
4X

n	2

ˇn

.n � 1/Š
�un C 1

2
�2

3
5

t

D 0: (21)
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Equations (20) and (21), as far as the HOD terms are such that they remain
hyperbolic, admit weak solutions in the form of classical shock waves (SWs), i.e.
traveling discontinuity from left (�l; ul) to right (�r; ur) values, which constitute the
generalization of the scalar case discussed with reference to the Hopf equation. The
velocity of such SWs, say Vc, can be found from a generalization of the Rankine-
Hugoniot condition (3) to the vectorial case. While the RH condition remains
formally the same, i.e. Vc.ql � qr/ D Œf.ql/ � f.qr/�, it should be noticed that the
scalar velocity should be the same for the two components of the vectors [48]. In
the 2 � 2 case, the RH equations fix both Vc and the admissible value of one of the
parameters of the jump, e.g. ur given �r; �l; ul.

For instance, when no HOD is effective (take ˇ2 D 1), an admissible right-going
shock which satisfies the entropy condition �l > �r, can be obtained with

ur D ul � .�l � �r/

s
�r C �l

2�l�r
I Vc D ul C �r

s
�r C �l

2�l�r
: (22)

This result can be generalized for HOD, thanks to Eqs. (20) and (21). For instance,
if ˇ3 ¤ 0, the SW velocity becomes

Vc D ˇ2.�lul � �rur/C ˇ3.�lu2l � �ru2r /=2

.�l � �r/
; (23)

where ur is obtained as the real root of the cubic equation ˇ3.ul � ur/2.ul C ur/C
2ˇ2.ul � ur/2 D g.�l; �r/, where g.�l; �r/ � .�l � �r/

2.�r C �l/=.�l�r/ [76].
As described in the previous sections, second-order dispersion regularizes

classical SWs by replacing the jump with an expanding fan filled with oscillations
described in terms of a modulated nonlinear periodic wave, i.e. a DSW. In this
case the SW velocity Vc is replaced by the velocities of the leading Vl and trailing
Vt edges (with Vl < Vc < Vt), where the periodic wave locally tends to a
soliton and a linear wave, respectively. HOD induces this structure to radiate, also
altering the dynamics of SW formation. In the following we specifically focus on
the effect of two leading HOD, namely third-order (3-HOD) and fourth-order (4-
HOD) dispersion, showing how RR is shed with different features depending on the
specific dispersive correction.

5.2 Resonant Radiation Emitted by Dispersive Shocks

The frequency of the RR can be predicted by applying a perturbation approach
which accounts for dispersion at all orders [78]. We start by assuming a radiating
shock front N which travels with invariant profile at definite velocity Vs D dt=dz.
In other words, we consider the local edge of a solution  .z; t/ D N .�/ exp.iksz/ of
Eq. (17) with dispersion truncated at second-order, where � D t � Vsz and ks is the
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nonlinear wavenumber of the shock. We account for perturbations to this front due to
HOD by assuming a perturbed field of the form  D Œ N .�/C p.z; �/� exp.iksz/. By
substituting  in Eq. (17), we obtain, after linearization (jpj � j N j), the following
evolution equation for p

i"pz C Od.i@� /p C 2j N j2p C N 2p� D F; (24)

where F D � �d.i@� /� ˇ2.i"@� /2=2
� N is a forcing term with zero wavenum-

ber, and Od.i@� / � d.i@� / � iVs"@� . Setting p.z; �/ D A.z/ expŒi.kz � !�/� C
B�.z/ expŒ�i.kz � !�/�, we find that Eq. (24) for F D 0 (i.e. for free-running
waves) reduces to the following system for the Stokes-antiStokes amplitudes a.z/ D
ŒA.z/;B.z/�T

i"
da

dz
C Ca D 0; (25)

C D
�
D.!/ � "k N 2
�. N �/2 �D.�!/ � "k

�
; (26)

where D.!/ D Qd."!/ C 2j N j2 � "ks, and Qd."!/ D P
n	2

ˇn
nŠ ."!/

n � ."!/Vs is

the Fourier transform of Od.i@� /. The dispersion relation � D �."!/ of such waves
is found by imposing det.C/ D 0, which yields the following two branches � D
�˙."!/

"�˙ D dodd
2

˙ 1

2

p
devenŒdeven C 4j 0j2�; (27)

where dodd � Qd."!/ � Qd.�"!/ and deven � Qd."!/ C Qd.�"!/, and we have
considered that ks D j 0j2=" is the Kerr wavenumber shift over the CW plateau
(upper state of the shock front) with power j 0j2 where RR is emitted. Frequencies
! D !RR such that �˙ D �."!RR/ D 0 can grow because they become resonant with
the forcing F in Eq. (24). They arise in pairs (! D ˙j!RRj) due to the symmetry of
the problem. Note, however, that the wave amplitude that grows at such frequencies
is generally very different, being related to the eigenvectors of the matrix.

A sufficiently accurate estimate for !RR can be obtained by expanding the square
root in Eq. (27) under the hypothesis j 0j2 � jdevenj, which yields

X
n	2

ˇn

nŠ
."!/n � ."!/Vs C j 0j2 D 0: (28)

In the case of dominant TOD (ˇ3 ¤ 0, ˇn D 0, n � 4), Eq. (28) explicitly reads as

�
ˇ3
."!/3

6
C ˇ2

."!/2

2
� Vs."!/

�
C j 0j2 D 0: (29)
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Equation (29) coincides with the condition derived in [76] on simple physical
ground. The square bracket represents the wavenumber of linear waves while the
remaining term stands for the nonlinear correction induced through cross-phase
modulation from the  0 plateau over which radiation is emitted.

In the limit Vs D 0, also neglecting the nonlinear correction j 0j2, Eq. (29) gives
the approximated result "!RR D �3ˇ2=ˇ3, or ˝RR D !RR=T0 D �3@2!k=@3!k in
physical units. This is equivalent to the original result derived for bright soliton [82].

5.2.1 Third-Order Dispersion

When 3-HOD is effective we find a cross-over from a perturbative regime (jˇ3j <
0:5) where the DSW leading edge turns out to be responsible for the RR, to a regime
where the 3-HOD is strong enough (jˇ3j 
 1) to modify the shock formation,
leading to enhanced RR produced by a traveling front which is approximated with
a classical SW. To show this and verify that Eq. (28) is able to predict the RR
frequency in both regimes, we consider first a step initial value that allows us to
calculate analytically the velocity. Without loss of generality, we take ˇ3 < 0.
Specifically, we consider the evolution of an initial jump from the “left” state
�l; ul D 0 for t < 0 to the “right” state �r.< �l/; ur D 2.

p
�r � p

�l/ for
t > 0, which is such to maintain constant r�.z D 0; t/ while rC.z D 0; t/ has
step-like variation. In this case, the modulated wavetrain produced upon evolution
[see Fig. 9a and c] in the limit ˇ3 D 0, is described by a rarefaction wave of the
Whitham modulation equations for the unperturbed NLS [16, 17, 39]. Following
a modulation approach and exploiting the fact that only one Riemann variable of
such Whitham equations changes, one can calculate the edge velocities of the fan
[76]. What is relevant for the RR is the leading-edge velocity, which we find to be
Vl D p

�l C ur D 2
p
�r � p

�l. Given a gray soliton on unchirped background
A ( D AŒw tanh.�/ C iv� exp.iA2z="/, � D w

"
.t � Avz/, w2 D 1 � v2) Vl turns

out to coincide with the soliton velocity Vsol D Av D p
�min, with natural position

A D p
�l, v D .2

p
�r � p

�l/=
p
�l, and the dip density �min D .2

p
�r � p

�l/
2. We

emphasize that the equivalence of the leading edge with a gray soliton holds only
locally since the DSW is strictly speaking a modulated nonlinear wave.

In this regime, if we account for j 0j2 D �l, Eq. (28) explicitly reads as

ˇ3

6
."!/3 C ˇ2

2
."!/2 � Vs."!/C �l D 0: (30)

Real solutions ! D !RR of Eq. (30), with Vs D Vl � 2
p
�r � p

�l correctly predict
the RR as long as jˇ3j < 0:5, as shown by the NLS simulation in Fig. 9. The DSW
displayed in Fig. 9a clearly exhibits a spectral RR peak besides spectral shoulders
due to the oscillating front, as shown by the spectral evolution in Fig. 9b and the
output spectrum (compared with unperturbed one) in Fig. 9d. Perfect agreement is
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(c)

(d)

Fig. 9 Radiating DSW from NLS (17) with " D 0:03, input step �l; �r D 1; 0:5, and 3-HOD
ˇ3 D �0:35: (a) Color level plot of density �.t; z/ (the dashed line gives the DSW leading edge
velocity Vl); (b) corresponding spectral evolution; (c) snapshots at z D 2 of �; u of unperturbed
case ˇ3 D 0 (in dashed red the corresponding classical SW); (d) comparison of output spectra with
(thick solid blue) and without (dashed red) 3-HOD (input thin dashed); inset: graphical solution of
Eq. (28). From [76]

found between the RR peak obtained in the numerics and the prediction [dashed
vertical line in Fig. 9b and d] from Eq. (30) with velocity Vs D Vl characteristic
of the integrable limit (ˇ3 D 0, snapshots in Fig. 9c). Indeed, in this regime, the
DSW leading edge is nearly unaffected by 3-HOD, whereas using the velocity
Vc [Eq. (22)] of the equivalent classical SW [reported for comparison in Fig. 9c]
would miss the correct estimate of !RR. We also point out that ks represents a small
correction, so !RR can be safely approximated by dropping the last term in Eq. (30)

to yield "!RR D 3
2ˇ3

�
�ˇ2 ˙

q
ˇ22 C 8Vsˇ3=3

�
, that can be reduced to the simple

formula "!RR D �3ˇ2=ˇ3 [80] only in the limit ˇ3Vs ! 0.
When jˇ3j grows larger, the aperture of the shock fan reduces (the difference

between leading and trailing edge velocities decreases), until quite unexpectedly
the DSW resembles a single traveling front, i.e. a classical SW. In this regime, we
find that Eq. (30) still gives the correct frequency!RR provided that Vs is taken as the
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(c) (d)

Fig. 10 As in Fig. 9 with larger 3-HOD ˇ3 D �1. The dashed vertical line in (b) and (d) gives
!RR from Eq. (30) with velocity Vs D Vc [corresponding to dashed line in (a)]. Here Vc D 0:69 and
ur D �0:543 are the parameters of the classical SW [shown in dashed red in (c)] from Eq. (23).
Solid line in (a) indicates the velocity VRR of the RR. From [76]

Rankine-Hugoniot velocity Vc of the equivalent classical SW calculated for ˇ3 ¤ 0

[Eq. (23)]. An example of this behavior is illustrated in Fig. 10 for ˇ3 D �1. The
RR becomes clearly visible in the temporal evolution [Fig. 10a and snapshots in
Fig. 10c], and is sufficiently strong to generate also �!RR via four-wave mixing, as
clear from the spectrum [Fig. 10b–d]. Perfect agreement between the numerics and
the value predicted from Eq. (30), once we set Vs D Vc, is found also in this case.
A physical interpretation of this remarkable transition from dispersive to classical
shock is that the emitted radiation behaves as a local loss for the shock front.

The behaviors of step initial data are basically recovered for pulse waveforms
that are more manageable in experiments. Figure 11 shows the transition from
the perturbative [Fig. 11a] to the non-perturbative [Fig. 11b] regime, for an input
gaussian pulse  .z D 0; t/ D �C .1��/ exp.�t2/ with background to peak density
ratio �2 D 0:09. As shown in Fig. 11a, for relatively small ˇ3, two asymmetric
DSWs emerge from wave-breaking points on the two pulse edges, which occur
at different distances due to broken symmetry in time caused by 3-HOD. Phase-
matching is achieved only for the DSW traveling with Vs > 0. The corresponding
!RR can be obtained from Eq. (30) provided we set Vs D Vl, with the DSW
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(d)(c)

(a) (b)

Fig. 11 Radiating DSW from Gaussian pulses with small background �2 D 0:09: (a) ˇ3 D
�0:35; (b) ˇ3 D �0:6; (c) Parameters determining the leading edge velocity Vs D p

�min C ul Dp
10�4 C 0:76 D 0:77 [dashed line in (a)], snapshot at z D 3; (d) Output spectra (thick blue,

ˇ3 D �0:35; thin red, ˇ3 D �0:6). The dashed lines give "!RR calculated from Eq. (30). Here
" D 0:03; blue curves in (a), (b) depict output snapshots. From [76]

leading edge velocity being (following the discussion of Fig. 9) Vl D p
�min C ul,

where the minimum density and the correction ul due to the local non-zero chirp
are evaluated numerically after wave-breaking as shown in Fig. 11c. Indeed, these
parameters cannot be obtained analytically for a generic initial value problem, nor
they are strictly constant upon evolution. Also in this case, a larger jˇ3j results in
a narrower fan (and larger shock distance), until eventually a simple front is left
which strongly radiates, as shown in Fig. 11b. In this regime, a good approximation
of the front velocity is obtained by the approximating classical SW in Eq. (23). In
both the regimes shown in Fig. 11a and b, Eq. (30) provides an accurate estimate
of the RR frequency, as shown by the dashed lines reported in the output spectra
in Fig. 11d. Notice also that, for symmetry reasons, sign reversal of 3-HOD (i.e.,
ˇ3 > 0) simply results into RR with opposite frequency, generated by the DSW
with opposite velocity (Vs < 0, left DSW).
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5.2.2 Fourth-Order Dispersion

A completely different scenario occurs when the dispersive correction is due to
4-HOD. In this case, the shock formation can compete with a different insta-
bility mechanism, namely modulational instability (MI). Indeed MI extends to
the defocusing regime ˇ2 D 1, whenever ˇ4 < 0, as proven experimentally
[83]. This competition occurs also in different systems [84]. The continuous wave
(CW) solution of Eq. (17) reads  .z; t/ D p

P0 expŒizP0="�. MI arises when
periodic perturbations in the form p.z; t/ D a.z/ expŒi!t� C b.z/ expŒ�i!t� grow
exponentially like expŒGz� at the expense of the CW pump. We find that the gain is
G."!/ D j=Œ	�j=", where

	 D ˙o ˙
q
˙2

e C 2P0˙e (31)

and ˙e D P
n	1 ˇ2n."!/2n=.2n/Š, ˙o D P

n	1 ˇ2nC1."!/2nC1=.2n C 1/Š are the
even and odd parts of dispersion, respectively. It is clear that only even dispersive
terms determine the stability properties.

Considering 4-HOD ˇ4 < 0 (ˇ2 D 1), we have maxG."!/ D P0=", for

"!peak D
�
6

�
ˇ2 C

q
ˇ22 C 2=3jˇ4jP0

�
=jˇ4j

�1=2
. The gain band ranges from

"!min D p
12ˇ2=jˇ4j to "!max D

s
6

�
ˇ2 C

q
ˇ22 C 4=3jˇ4jP0

�
=jˇ4j (and

symmetric for ! ! �!).
Moreover, the phase-matching curve in Eq. (28), involving in this case a fourth

order polynomial, leads for the shock with Vs > 0 to two possible phase-matching
frequencies, !RR1 and �!RR2 (!RR1;2 > 0), which become four (two symmetric
pairs) since opposite frequencies are phase-matched by the shock with opposite
velocity Vs < 0 according to Eq. (28), as illustrated in Fig. 12a. Our analysis shows
that the two frequencies !RR1;RR2 (arising from shock on opposite edges) lie on the
opposite sides of the MI gain curve (calculated for continous waves), which has
cut-off frequency "!c D p

12=jˇ4j and is narrow bandwidth. For an input pulse
MI amplifies frequencies in a larger bandwidth which serve as a seed for the RR.
Indeed, as clear from the NLS simulation in Fig. 12b, the twin-band RR starts to
grow, triggered by MI, even during the process of pulse steepening [see evolution in
Fig. 12c], while becoming prominent as the DSWs start to develop, traveling with
definite velocities (here Vs D ˙0:77). The RR frequencies from Fig. 12a fit well
those reported in the numerical output spectrum in Fig. 12d. The coexistence of
the two wave-breaking phenomena (MI and DSW) is clearly visible in the output
snapshot in Fig. 12c.
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100
10

(a) (b)

(d)

(c)

Fig. 12 (RR ruled by 4-HOD (ˇ3 D 0, ˇ4 D �0:5): (a) dispersion curves from Eq. (28) for
positive (VC

s , solid blue) and negative (V�
s , dashed green) velocity crossing knl (horizontal red

line) in ˙!RR1;RR2; vertical stripes indicate MI gain bands; (b) spectral evolution; (c) temporal
dynamics (blue curve depicts output snapshot); (d) output spectrum [central red dashed line is
peak MI gain, blue and green dashed lines correspond to RR, arrows in (a)]. Here " D 0:05, input
Gaussian pulse with background �2 D 0:09. From [76]

6 Conclusions

We have reviewed the area of dispersive hydrodynamics with emphasis on the
generation of dispersive shock waves in the field of water waves and nonlinear
optics. Experimental evidence of the occurrence of the dispersive shocks have
been reported in different regimes that involve initial data with no soliton content,
purely solitonic dispersive shocks, or periodic waves. We have discussed the
models that allow to describe such phenomenon, i.e. the KdV for surface gravity
waves and the NLS in optics. We have emphasised the role of nonlocality which
needs to be accounted for, at linear level in water waves (Whitham equation)
and at nonlinear level in nonlinear optics (diffusive NLS equation). Furthermore
we have demonstrated that dispersive shock waves resulting from the nonlinearity
overbalancing a weak leading-order dispersion can emit resonant radiation owing
to higher-order dispersive contributions. We have analysed such phenomenon for
the defocusing NLS equation, giving criteria for calculating the radiated frequency
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based on the estimate of the shock velocity, revealing also a diversity of possible
scenarios depending on the order and magnitude of the dispersive corrections.

We point out that the dispersive hydrodynamics is a major area of investigation,
and dispersive shocks have been demonstrated to play a substantial role in contexts
that we did not have the proper room to discuss in this short survey. They include
promising and rapidly developing areas such as the propagation in the presence of
material disorder or incoherency of the field [85–87] (see chapter by Picozzi et al.),
optical cavities [79, 88], viscous fluid conduits [89], or flow past an obstacle [90],
and can be important for several optical applications [91, 92].

Acknowledgements The authors gratefully acknowledge C. Conti, J. Fatome, C. Finot, M. Klein,
G. Millot, M. Onorato, M. Peccianti, G. Ruocco, without whom the experiments presented here
would have not been possible, as well as fruitful collaboration with A. Armaroli, F. Baronio, G.
Bellanca, D. Faccio, A. Fratalocchi, J. Garnier, N. Gofraniha, S. Malaguti, A. Moro, A. Picozzi, A.
Valiani, and G. Xu, and enlightening discussions with M. Ablowitz, G. Biondini, B. Dubrovin, G.
El, T. Grava, M. Hoefer, A. Kamchatnov, Y. Kodama, P. Miller, and S. Wabnitz. The research was
partially supported by IRCICA (USR 3380 Univ. Lille - CNRS), by the ANR NoAWE (ANR-14-
ACHN-0014), Labex CEMPI (ANR-11-LABX-0007) and Equipex FLUX (ANR-11-EQPX-0017)
projects, by the “Fonds Européen de Développement Economique Régional”, and by the grant
PRIN 2012BFNWZ2.

References

1. Hoefer, M., Ablowitz, M.: Dispersive shock waves. Scholarpedia 4(11), 5562 (2009)
2. Whitham, G.B.: Linear and Nonlinear Waves, vol. 42. Wiley, New York (1974)
3. Moiseev, S., Sagdeev, R.: Collisionless shock waves in a plasma in a weak magnetic field. J.

Nucl. Energy. Part C: Plasma Phys. Accelerators Thermonuclear Res. 5(1), 43 (1963)
4. Taylor, R., Baker, D., Ikezi, H.: Observation of collisionless electrostatic shocks. Phys. Rev.

Lett. 24(5), 206 (1970)
5. Korteweg, D.J., De Vries, G.: On the change of form of long waves advancing in a rectangular

canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci 39
(240), 422–443 (1895)

6. Boussinesq, J.: Essai sur la théorie des eaux courantes,Mémoires présentés par divers savants a
l’Acad. des Sci. Inst. Nat. France, XXIII, pp. 1–680, 1877, vol. 2. Imprimerie nationale (1877)

7. De Jager, E.: On the origin of the Korteweg-de Vries equation. arXiv: preprint math/0602661
(2006)

8. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the
recurrence of initial states. Phys. Rev. Lett. 15(6), 240 (1965)

9. Gurevich, A., Pitaevskii, L.: Nonstationary structure of a collisionless shock wave. Sov. Phys.
JETP 38, 291 (1974)

10. Whitham, G.: Non-linear dispersive waves. Proc. R. Soc. Lond. A 283(1393), 238–261 (1965)
11. Flaschka, H., Forest, M., McLaughlin, D.: Multiphase averaging and the inverse spectral

solution of the korteweg-de vries equation. Commun. Pure Appl. Math. 33(6), 739–784 (1980)
12. Lax, P.D., Levermore, C.D.: The small dispersion limit of the korteweg-de vries equation. I.

Commun. Pure Appl. Math. 36(3), 253–290 (1983)
13. Lax, P.D., Levermore, C.D.: The small dispersion limit of the korteweg-de vries equation. II.

Commun. Pure Appl. Math. 36(5), 571–593 (1983)
14. Lax, P.D., Levermore, C.D.: The small dispersion limit of the korteweg-de vries equation. III.

Commun. Pure Appl. Math. 36(6), 809–829 (1983)



364 M. Conforti and S. Trillo

15. Lax, P., Levermore, C., Venakides, S.: The generation and propagation of oscillations in
dispersive initial value problems and their limiting behavior. In: Fokas, A.S., Zakharov, V.E.
(eds) Important Developments in Soliton Theory, pp. 205Ű241. Springer, Berlin (1993)
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3WRI Three wave resonant interaction

AB Akhmediev breather

BBO Beta barium borate

BFI Benjamin-Feir index

BO Benjamin-Ono

cmKdV Complex modified Korteweg-de Vries

CW Continuous wave

DNLS Derivative nonlinear Schrödinger

DSW Dispersive shock wave

ECL External cavity laser

ECMWF European centre for medium-range weather forecasts

FROG Frequency resolved optical gating

FT Fourier transform

HOD Higher order dispersion

HOSM Higher order spectral method

h.o.t. Higher order terms

IST Inverse scattering transform

KdV Korteweg-de Vries

KM Kuznetsov-Ma

KMB Kuznetsov-Ma breather
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KP Kadomptsev-Petviashvilii

LWSH Long-wave-short-wave

mFWM Multiple four-wave mixing

MI Modulational instability

MNLSE Modified nonlinear Schrödinger equation

MTM Massive thirring model

NLS Nonlinear Schrödinger

NLSE Nonlinear Schrödinger equation

PCF Photonic crystal fiber

PDE Partial differential equation

RF Radio frequency

RH Rankine-Hugoniot

RR Resonant radiation

RW Rogue wave

SC Supercontinuum

SG Sine-Gordon

SMF Single-mode fiber

SS Sasa-Satsuma

ST Scattering transform

SW Shock wave

T-KdV Time-like Korteweg-de Vries

VNLS Vector nonlinear Schrödinger

WT Wave turbulence
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